首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

2.
Human neutrophils stimulated with a phorbol ester (phorbol 12-myristrate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 min. In contrast, 4-alpha-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.  相似文献   

3.
We investigated the inter-relationships of superoxide (O2-) release, membrane depolarization and an increase in cytoplasmic free Ca2+, [Ca2+]i, in human granulocytes stimulated by various agonists. When concanavalin A or the Ca2+ ionophore ionomycin was used as stimulus, an increase in [Ca2+]i clearly preceded the onset of membrane depolarization, which was followed by O2- release. On the other hand, when N-formylmethionylleucylphenylalanine or wheat-germ agglutinin was used as stimulus, no demonstrable lag was seen in any of the responses. O2- release and membrane depolarization stimulated by all these agonists were markedly potentiated in parallel by pretreatment of cells with a low concentration of phorbol myristate acetate (0.25 ng/ml), whereas an increase in [Ca2+]i was not affected or minimally potentiated. The lag time between addition of the stimulus (concanavalin A or ionomycin) and onset of membrane depolarization or O2- release was significantly reduced by pretreatment of cells with phorbol myristate acetate, whereas the lag time between addition of concanavalin A and onset of the increase in [Ca2+]i was not affected. The dose-response curves for triggering of O2- release and membrane depolarization by each of receptor-mediated agonists in phorbol myristate acetate-pretreated or control cells were identical. These findings suggest that; (a) an increase in [Ca2+]i stimulates membrane depolarization indirectly; (b) a low concentration of phorbol myristate acetate potentiates membrane depolarization and O2- release by acting primarily at the post-receptor level, in particular, at the level distal to an increase in [Ca2+]i, but not by augmenting an increase in [Ca2+]i; and (c) the system provoking membrane depolarization and the system activating NADPH oxidase share a common pathway, which may be susceptible to a low concentration of phorbol myristate acetate.  相似文献   

4.
We have studied, in streptolysin O-permeabilized HL-60 cells and in HL-60 membrane preparations, the effects of phorbol 12-myristate 13-acetate (PMA) on polyphosphoinositide-specific phospholipase C (PLC) activity and on terminal differentiation towards macrophagic-like cells. We showed that terminal differentiation was induced when differentiating concentrations of the drug were present for only 1-2 h in the culture medium. Conditions inducing differentiation also inhibited PLC activity for a long lasting period (at least 5 h). When terminal differentiation affected only part of the cell population, inhibition of phospholipase C activity was found to be less marked and reversible over the period studied. Moreover in experiments done in an HL-60 clone resistant to PMA, no inhibition of PLC activity was provoked by this tumour promotor. In order to study the involvement of protein kinase C in this process, we measured modifications of PLC activity by PMA in the presence of two different protein kinase C inhibitors, staurosporine and H-7. They both prevented the inhibition of PLC activity by PMA indicating that this inhibition is likely to be related to the effect of PMA on protein kinase C activity. This was also confirmed by the fact that active protein kinase C, by itself, was able to decrease PLC activity when added to membrane preparations or to streptolysin O-permeabilized control HL-60 cells. These results indicate that PMA acts in inhibiting phospholipase C activity through its effect on protein kinase C activation and/or on protein kinase C translocation to the plasma membrane and that terminal differentiation, might be related to changes in both protein kinase C and PLC activities.  相似文献   

5.
Cultured human alveolar macrophages from smokers with lung cancer produced spontaneously variable amounts of factors stimulating fibroblast proliferation and production of prostaglandin E2 and collagenase by fibroblasts. These biological activities belong to molecules similar or identical to interleukin 1. Exogenous leukotriene B4 added to alveolar macrophage cultures increased the production of these factors. The Ca++ ionophore A23187 was found to have similar effects. By the control of monokine production, leukotriene B4 locally released by inflammatory cells may modulate lung fibroblast functions.  相似文献   

6.
Chemotaxis of human neutrophils in response to a gradient of the chemotactic peptide, fmet-leu-phe (FMLP), was measured by the under-agarose technique. The dose-response curve for FMLP was biphasic; low concentrations were stimulatory, and the response was reduced at higher concentrations. The response to FMLP was partially inhibited (about 50%) in the absence of extracellular Ca2 (EGTA added). NiCl2 dose-dependently inhibited FMLP-stimulated chemotaxis in the presence of extracellular Ca2+; the maximum inhibition obtainable with NiCl2 was similar to that with the absence of extracellular Ca2+. These results suggest that FMLP-stimulated chemotaxis is, at least partially, dependent on stimulation of Ca2+ influx. The phorbol ester, PMA, dose-dependently inhibited chemotaxis; the response was almost completely inhibited by 10 nM PMA. This result indicates that activation of protein kinase C inhibits chemotaxis. These results are discussed in relation to the physiological responses of neutrophils.  相似文献   

7.
It is widely believed that the transduction pathway in the activation of the NADPH oxidase by formyl-methionyl-leucyl-phenylalanine (FMLP) in neutrophils involves the stimulation of phosphoinositide hydrolysis, the increase in [Ca2+]i and the activity of the Ca2+ and phospholipid dependent protein kinase C. The results presented here show that the activation of the respiratory burst by FMLP can be dissociated by the stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and Ca2+ changes. In fact, in neutrophils pretreated (primed) with non stimulatory doses of phorbol myristate acetate the respiratory burst by chemotactic peptide is greatly potentiated while the increase in [3H] inositol phosphates formation and in [Ca2+]i are depressed due to the inhibition of phospholipase C. This finding indicates that FMLP can trigger also a sequence of transduction reactions for the activation of the NADPH oxidase different from that involving the formation of the second messengers diacylglycerol and inositol phosphates and the increase in free Ca2+ concentration.  相似文献   

8.
Challenge of human peripheral blood leukocytes with ionophore A23187 resulted in leukotriene (LT) synthesis, a decrease in total cellular 5-lipoxygenase activity, and a change in the subcellular localization of the enzyme. In homogenates from control cells, greater than 90% of the 5-lipoxygenase activity and protein was localized in the cytosol (100,000 X g supernatant). Ionophore challenge (2 microM) resulted in a loss of approximately 55% of the enzymatic activity and 35% of the enzyme protein from the cytosol. Concomitantly, there was an accumulation of inactive 5-lipoxygenase in the membrane (100,000 X g pellets) which accounted for at least 45% of the lost cytosolic protein. There was a good correlation between the quantities of LT synthesized and 5-lipoxygenase recovered in the membrane over an ionophore concentration range of 0.1-6 microM. The time course of the membrane association was similar to that of LT synthesis. Furthermore, although the pellet-associated enzyme recovered from ionophore-treated leukocytes was inactive, an irreversible, Ca2+-dependent membrane association of active 5-lipoxygenase could be demonstrated in cell-free systems. To determine whether ionophore treatment induced proteolytic degradation of 5-lipoxygenase, the total activity and protein content of 10,000 X g supernatants from control and ionophore-treated cells were examined. These supernatants, which included both cytosolic and membrane-associated enzyme, showed a 35% loss of 5-lipoxygenase activity but only an 8% loss of enzyme protein as a result of ionophore challenge (2 microM). Therefore, the majority of the loss of 5-lipoxygenase activity was most likely due to suicide inactivation during the LT synthesis, rather than to proteolytic degradation. Together these results are consistent with the hypothesis that ionophore treatment results in a Ca2+-dependent translocation of 5-lipoxygenase from the cytosol to a membrane-bound site, that the membrane-associated enzyme is preferentially utilized for LT synthesis, and that it is consequently inactivated. Thus, membrane translocation of 5-lipoxygenase may be an important initial step in the chain of events leading to full activation of this enzyme in the intact leukocyte.  相似文献   

9.
Human blood eosinophils and neutrophils that had been incubated with the supernatants of cultures of lipopolysaccharide (LPS)-stimulated blood mononuclear cells demonstrated respective enhanced abilities to produce immunoreactive leukotriene C4 (LTC4) and immunoreactive leukotriene B4 (LTB4) after activation by the calcium ionophore A23187. Under optimal conditions, the enhancing effect was observed with the eosinophils (n = 21) and the neutrophils (n = 14) from all but one donor of each type of granulocyte. Enhancement was maximum when granulocytes were preincubated with a 1/3 dilution of LPS-stimulated mononuclear cell culture supernatants for 1 to 2.5 min and were then stimulated with 2.5 microM ionophore for 1 to 2 min (neutrophils) or 15 min (eosinophils). Maximal enhancement ranged from 20 to 4500% for LTC4 generation by eosinophils (geometric mean, 87%) and from 30 to 1600% for LTB4 generation by neutrophils (geometric mean, 105%). There was no enhancement of leukotriene biosynthesis when the LPS-stimulated mononuclear cell culture supernatants and ionophore were added simultaneously to the granulocytes. The enhancing activity for LTC4 generation by eosinophils was removed by washing the cells after the addition of the LPS-stimulated mononuclear cell culture supernatants and before the introduction of ionophore. This enhancing activity was produced by Ig-, Leu-1- adherent blood mononuclear cells, which are presumed to be monocytes; supernatants of adherent cells augmented A23187-induced LTC4 generation by eosinophils from 21 to 2300% (geometric mean, 402%) in 11 experiments and LTB4 generation by neutrophils from 7 to 200% (geometric mean, 60%) in 10 experiments. There was an inverse correlation between the percent enhancement and the LTC4 levels produced by stimulated eosinophils in the absence of the monokine(s) (r = -0.79, p less than 0.01), but not between percent enhancement and the LTB4 levels generated by ionophore-activated neutrophils in the control buffer. The activity of the monocyte-derived enhancing material on each type of granulocyte was relatively heat stable. Enhancement of eosinophil production of LTC4 was associated with an acidic group of monocyte-derived molecules having isoelectric points of 4.2 to 4.3, 4.5 to 4.6, and 4.9, and exhibiting marked heterogeneity in size.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The stimulative effects of myristate on the superoxide generation and depolarization of membrane potential of polymorphonuclear leukocytes (PMN) are particularly strong, yet myristate does not affect the intracellular free Ca2+ level ([Ca2+]i) in the presence of 1 microM free calcium in calcium-EGTA buffer. The half maximum concentration of myristate was 10 microM. Myristate inhibited the transitory changes in [Ca2+]i induced by formylmethionyl-leucyl-phenylalanine (FMLP), but stimulated further the FMLP-induced superoxide generation; these effects are similar to those of phorbol myristate acetate (PMA). The myristate-induced superoxide generation was partially inhibited by H-7, a specific inhibitor of protein kinase C. Myristate stimulated the activity of Ca2+- and phospholipid-dependent protein kinase (protein kinase C) in a concentration-dependent manner in the presence of 10(-6) M Ca2+. The Ka was 100 microM. These results suggested that there is no relation between the superoxide generation and the [Ca2+]i change in PMNs and that the effects of myristate are similar to those of PMA against PMN.  相似文献   

11.
By using high performance liquid chromatography with simultaneous detection of unlabeled and radiolabeled product of lipoxygenase oxidation of arachidonic acid, the mechanism of exogenous arachidonate involvement in leukotriene synthesis in human neutrophils induced by the Ca2+ ionophore A23187 was studied. It was found that after addition of labeled arachidonate the specific radioactivity of the reaction product (leukotriene B4) does not change on a time scale, i.e., the free arachidonic acid exchange between the cell and extracellular space is a very rapid process. Exogenous arachidonic acid was found to be the substrate of the lipoxygenase reaction which acts in parallel with the endogenous one. The dependence of specific radioactivity of leukotriene B4 in added arachidonic acid concentration is described by a hyperbolic curve with saturation. When exogenous arachidonate is used at a concentration of 10.8 +/- 3.9 microM, that of intracellular arachidonic acid increases twofold at the expense of the exogenously added acid.  相似文献   

12.
The calmodulin antagonist N(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7) has been examined as an inhibitor of superoxide anion production and granule exocytosis in phorbol ester (PMA)-activated neutrophils. Inhibition of the respiratory burst was observed at a concentration of W-7 identical to that required for inhibition of native protein kinase C (PKC), whereas the concentration required to inhibit the secretory response was found to correspond to that required for inhibition of the proteolytically converted fully active PKC. The IC50 of W-7 was in both cases 5 and 12 fold higher than that required for inhibition of calmodulin dependent kinases. The results confirm the essential role for the membrane-bound PKC in the production of O2- radicals and provide a clear evidence of the direct participation of the proteolytically activated cytosolic PKC to the secretory response of PMA activated neutrophils.  相似文献   

13.
The calcium ionophore, A23187, and the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), interacted synergistically to elicit an accelerated superoxide production response in human neutrophils. The lag period preceding PMA-induced superoxide generation was decreased in a dose-dependent manner by A23187 at a concentration range from 1.0 X 10(-8) to 1.0 X 10(-5) M. Superoxide production rate, however, was subject to biphasic effects. While the rate was potentiated in a dose-dependent manner at A23187 concentrations below 1.0 X 10(-6) M, inhibitory influences became manifest at higher concentrations. Total superoxide production was subject to inhibitory effects, characterized by a mean inhibitory dose of 1.3 X 10(-6) M. The synergistic interaction of A23187 with PMA is consistent with a role for protein kinase C in neutrophil activation. Inhibition at high A23187 concentrations appeared to result from the effects of elevated intracellular Ca2+ levels on either NADPH oxidase itself, or some step in the transduction process linking protein kinase C to the oxidase complex.  相似文献   

14.
This present report describes the effect of H-7, a protein kinase C inhibitor, on the release of oleic, linoleic and arachidonic acids in A23187-stimulated neutrophils. Surprisingly, the inhibitor potentiated the release of all three unsaturated fatty acids in neutrophils stimulated with A23187 alone. In contrast, released oleic acid, linoleic acid and arachidonic acid in phorbol 12-myristate 13-acetate-primed neutrophils were attenuated by 35, 47 and 33%, respectively, in the presence of H-7 (300 microM). Phorbol 12-myristate 13-acetate (PMA) had no effect on A23187-stimulated release of saturated fatty acids. Both PMA and H-7 when used alone had no effect on the release of saturated or unsaturated fatty acids. We, therefore, conclude that H-7 may have effects other than inhibiting PMA-primed responses including superoxide generation, degranulation and arachidonic acid release in human neutrophils.  相似文献   

15.
Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) has been implicated in the regulation of transport processes in a variety of tissues and cell lines. To establish whether protein kinase C participates in the regulation of renal phosphate transport, we examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on phosphate uptake in fresh preparations of mouse renal tubules, and we correlated the changes in transport activity with protein kinase C activation and phosphorylation of endogenous proteins. PMA inhibited Na+-dependent phosphate transport, elicited a rapid translocation of protein kinase C from the cytosolic to the particulate fraction and stimulated the phosphorylation of endogenous substrates in the cytosolic and brush border membrane fractions. Effects of PMA were maximal after a 10 min incubation of the tubules with the activator. 4 alpha-Phorbol, an inert analogue of PMA, did not elicit any of these effects. The present results demonstrate a temporal correlation between inhibition of Na+-dependent phosphate transport, translocation and activation of protein kinase C, and phosphorylation of endogenous proteins in mouse renal tubules. These data suggest that protein kinase C may play a regulatory role in phosphate transport in mammalian kidney.  相似文献   

16.
L-type Ca2+ channel activity was assayed in L6 cells as the rate of nifedipine-sensitive Ba2+ influx in a depolarizing medium. In the absence of extracellular Ca2+, activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or thymeleatoxin (TMX) inhibited Ba2+ influx by 38%. Thapsigargin (Tg), a selective inhibitor of the Ca2+-ATPase in the sarcoplasmic reticulum, evoked a rise in the cytosolic Ca2+ concentration ([Ca2+]i) in a Ca2+-free medium from 30 to 80 nM. This [Ca2+]i increase declined slowly, giving rise to a modest elevation of [Ca2+]i that persisted for >5 min. The inhibitory effects of PMA and TMX on channel activity were abolished when tested in Tg-treated cells in a Ca2+-free medium. However, when the Ca2+ ionophore, ionomycin, was applied with Tg, PMA and TMX retained their inhibitory effect on L-type Ca2+ channel activity, suggesting that a lower amplitude and prolonged release of Ca2+ stores is necessary for abrogating PKC-mediated inhibition of LCC. Cyclosporin A (5 μM) and ascomycin (5 μM), inhibitors of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, fully restored the inhibitory effect of PMA and TMX on channel activity. Addition of 1 mM CaCl2 to the Tg-treated cells increased [Ca2+]i to 165 nM and also restored the inhibitory effects of PMA and TMX. These results indicate that a small, relatively prolonged [Ca2+]i increase elicited by passive depletion of internal Ca2+ stores led to activation of calcineurin, giving rise to an increase in protein phosphatase activity that counteracted the inhibitory effects of PKC on channel activity. A larger increase in [Ca2+]i via store-dependent Ca2+ entry enhanced the activity of PKC sufficiently to overcome the protein phosphatase activity of calcineurin. This study is the first to demonstrate that the regulation of L-type Ca2+ channels in a myocyte model involves a balance between the differential Ca2+ sensitivities and opposing actions of PKC and calcineurin.  相似文献   

17.
The interactions have been studied of a water-soluble, polymeric derivative of prostaglandin B1, PGBX, with human polymorphonuclear leukocytes (PMN). PGBX, which is a potent ionophore of divalent cations, provoked superoxide anion (O2.-) generation and lysosomal enzyme release in cytochalasin B-treated PMN in the presence of extracellular divalent cations (Ca2+, Sr2+, Mg2+, Mn2+, Ba2+). Kinetic and dose-response studies showed that PGBX mimicked te action of ionophore A23187 in PMN. Both ionophores induced superoxide generation and release of enzymes from specific and azurophil granules (lysozyme > beta-glucuronidase) without provoking release of the cytoplasmic marker enzyme lactic dehydrogenase. In contrast, the precursor of PGBX, prostaglandin B1 (PGB1), and arachidonate did not mimic ionophore-induced stimulation of PMN. PGBX induced enzyme release both in the presence of extracellular Ca2+ and Ba2+ (both of which it translocates in model liposomes), whereas A23187 showed specificity for Ca2+ (which it translocates preferentially over Ba2+). These studies indicate that the actions of a water-soluble polymer (PGBX) derived from a naturally occurring prostaglandin (PGB1) on human neutrophils resemble those of a classical ionophore (A23187). Moreover, they provide additional evidence that increments in the intracellular levels of divalent cations may signal stimulus-secretion coupling in human neutrophils.  相似文献   

18.
The Ca2+/phospholipid-dependent protein kinase (protein kinase C) of human neutrophils is converted to a proteolytically modified Ca2+/phospholipid-independent form (Inoue, M., Kishimoto, A., Takai, Y.U., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616) on incubation with neutrophil membranes in the presence of micromolar concentrations of Ca2+ and an endogenous Ca2+-requiring proteinase (Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., and Horecker, B. L. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6435-6439). We have now demonstrated the appearance of a similar Ca2+/phospholipid-independent kinase in intact human neutrophils stimulated by phorbol 12-myristate 13-acetate (PMA). The following evidence supports the conclusion that the Ca2+/phospholipid-independent protein kinase recovered from the PMA-treated cells is a proteolytically modified form of the "native" protein kinase C. 1) In cells exposed to PMA, the rate of disappearance of Ca2+/phospholipid-dependent protein kinase C activity is correlated with the rate of appearance of the Ca2+/phospholipid-independent kinase. 2) The chromatographic behavior of the new protein kinase and its molecular size (approximately 65 kDa) are identical to those previously reported for the proteolytically modified form of protein kinase C. 3) The modified protein kinase no longer binds to the cell membrane and is recovered almost entirely in the cytosol fraction. 4) In neutrophils preloaded with inhibitors of the Ca2+-requiring proteinase, stimulation with PMA results in translocation of protein kinase C from the cytosol fraction to the particulate fraction, but the appearance of the soluble, Ca2+/phospholipid-dependent form is prevented. We conclude that binding of protein kinase C to the plasma membrane and its proteolytic conversion are related, but independent, processes both elicited by exposure of neutrophils to the phorbol ester. Proteolytic cleavage of the membrane-bound protein kinase C provides an alternative mechanism for its activation and may account for certain of the cellular responses observed in PMA-stimulated neutrophils.  相似文献   

19.
Incubation of washed human sperm with [3H]- or [14C]arachidonic acid allowed a major incorporation of the label into phospholipids, provided that the final concentration of the fatty acid did not exceed 20 microM. A further challenge with calcium ionophore A23187 of spermatozoa suspended in a calcium-containing medium led to phospholipid hydrolysis, which could account for 10-12% of total cell radioactivity. Degradation products were identified as free, unconverted arachidonic acid, occurring with some diacylglycerol. Phospholipid hydrolysis was significant after 15 min of incubation and became maximal after 120 min. It was found to be calcium dependent, diacylglycerol and free arachidonate production occurring maximally at 2 mM and 5 mM CaCl2, respectively. Phosphatidylcholine and phosphatidylinositol were the most significantly degraded phospholipids after 60 min of incubation. Similar incubations conducted with 32P-labeled sperm confirmed the selective hydrolysis of phosphatidylcholine and revealed an increase production of phosphatidic acid probably due to a phosphorylation of diacylglycerol. Under the same conditions, one third of the cells remained motile and electron microscopy revealed that acrosome reaction was completed in 40% of the cells and displayed an intermediary state in 40-50% of the spermatozoa. Furthermore, a good parallelism was observed between the extent of the acrosome reaction and the extent of phospholipid hydrolysis promoted by increasing concentrations of A23187. It is concluded that calcium entry into the cells activates both a phospholipase A2 and a phospholipase C, leading to the production of substances, like lysophospholipid, diacylglycerol or phosphatidic acid, which may or may not be involved in acrosome reaction.  相似文献   

20.
Thapsigargin was used to study the regulation of different static calcium level ([Ca2+]i) on the respiratory hurst of human neutrophils stimulated with phorbol myristate acetate (PMA). The result showed that the onset time of the respiratory hurst was obviously reduced by elevation of static [Ca2+]i but is still much longer than that stimulated with N-formylmethionylleucylphenylalanine (fMLP). To find the reason, the onset times of the respiratory burst stimulated with fMLP, 1,2-dioctanoyl-sn-glycerol (DiC8), and PMA were determined at different static [Ca2+]i. It turns out that although DiC8 was unable to induce the respiratory burst at low [Ca2+], the onset time of DiC8-stimulated response at high [Ca2+]i was almost the same as that stimulated with fMLP. The study revealed that the fast onset of the fMLP-stimulated respiratory burst in comparison with PMA-stimulated response is not only due to the transient rise of [Ca2+]i, but is also due to the higher efficiency of diacylglycerol (DAG) in activating protein kinase c (PKC). The determining step in governing the onset of a respiratory burst is the activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号