首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.  相似文献   

2.
He ZH  Li J  Sundqvist C  Timko MP 《Plant physiology》1994,106(2):537-546
The effects of leaf developmental age on the expression of three nuclear gene families in pea (Pisum sativum L.) coding for enzymes of chlorophyll and heme biosynthesis have been examined. The steady-state levels of mRNAs encoding aminolevulinic acid (ALA) dehydratase, porphobilinogen (PBG) deaminase, and NADPH:protochlorophyllide reductase were measured by RNA gel blot and quantitative slot-blot analyses in the foliar leaves of embryos that had imbibed for 12 to 18 h and leaves of developing seedlings grown either in total darkness or under continuous white light for up to 14 d after imbibition. Both ALA dehydratase and PBG deaminase mRNAs were detectable in embryonic leaves, whereas mRNA encoding the NADPH:protochlorophyllide reductase was not observed at this early developmental stage. All three gene products were found to increase to approximately the same extent in the primary leaves of pea seedlings during the first 6 to 8 d after imbibition (postgermination) regardless of whether the plants were grown in darkness or under continuous white-light illumination. In the leaves of dark-grown seedlings, the highest levels of message accumulation were observed at approximately 8 to 10 d postgermination, and, thereafter, a steady decline in mRNA levels was observed. In the leaves of light-grown seedlings, steady-state levels of mRNA encoding the three chlorophyll biosynthetic enzymes were inversely correlated with leaf age, with youngest, rapidly expanding leaves containing the highest message levels. A corresponding increase in the three enzyme protein levels was also found during the early stages of development in the light or darkness; however, maximal accumulation of protein was delayed relative to peak levels of mRNA accumulation. We also found that although protochlorophyllide was detectable in the leaves immediately after imbibition, the time course of accumulation of the phototransformable form of the molecule coincided with NADPH:protochlorophyllide reductase expression. In studies in which dark-grown seedlings of various ages were subsequently transferred to light for 24 and 48 h, the effect of light on changes in steady-state mRNA levels was found to be more pronounced at later developmental stages. These results suggest that the expression of these three genes and likely those genes encoding other chlorophyll biosynthetic pathway enzymes are under the control of a common regulatory mechanism. Furthermore, it appears that not light, but rather as yet unidentified endogenous factors, are the primary regulatory factors controlling gene expression early in leaf development.  相似文献   

3.
The buckwheat metallothionein-like (MT3) gene expression was studied throughout seed and leaf development, as well as under the influence of different external stimuli. MT3 mRNAs were detected from the early stage of seed development to the end of maturation, reaching the highest level during the mid-maturation stage. High MT3 mRNA level was noticed for both green and senescent leaves. The influence of raising Cu ion concentrations on MT3 gene expression was studied only in leaves, while the effect of Zn ions was analyzed through seed development as well. It was found that Cu and Zn ions had stimulatory effects on expression in leaves. MT3 expression was significantly enhanced in the early stage of seed development in response to Zn ions, while after this stage, influence of Zn ions was not detected. After H2O2/NaCl treatment, MT3 mRNA level was decreased in green leaves, contrary to senescent leaves where expression levels remained unchanged. H2O2 treatment caused the increase of MT3 mRNA levels in the mid-maturation stage of seed development. NaCl had no effect on expression levels in seeds. According to obtained results, proposed functions in different plant organs regarding oxidative stress and metal homeostasis are discussed.  相似文献   

4.
5.
By the use of ribonuclease protection assay (RPA) combined with immunohistochemical techniques, the expression of estrogen receptor (ER) alpha and ERbeta was mapped in the developing gonads and reproductive tracts of male and female mice from fetal day 14 to postnatal day 26 (PND 26). This study was designed to determine the pattern of expression of both ER subtypes in specific tissue compartments during development. In ovaries, ERalpha mRNA was detected at all ages examined; ERbeta mRNA was seen as early as PND 1, and its expression increased with age. Immunolocalization showed ERbeta in differentiating granulosa cells of the ovary, whereas ERalpha was predominantly seen in interstitial cells. The remainder of the female reproductive tract showed ERalpha mRNA at all ages examined with little or no significant levels of ERbeta, except on PND 1 when a low level of message appeared. In males, ERalpha and ERbeta mRNA were detected in the fetal testis; however, ERbeta gradually increased until PND 5 and subsequently diminished to undetectable levels by PND 26. Immunolocalization showed ERalpha in the interstitial compartment of the testis, whereas ERbeta was seen predominantly in developing spermatogonia. The remainder of the male reproductive tract showed varying amounts of both receptors by RPA and immunostaining throughout development. These studies provide information useful in studying the role of both ER subtypes in normal differentiation, and they provide indications of differential tissue expression during development.  相似文献   

6.
7.
8.
9.
10.
11.
A rabbit antiserum was raised against phosphoenolpyruvate carboxykinase (PCK) purified from Urochloa panicoides, a PCK-type C4 monocot. The antiserum was used to screen a cDNA expression library constructed from U. panicoides leaf poly(A)+RNA. Inserts from immunoreactive clones were used to rescreen the library and obtain three overlapping cDNAs comprising a 2220 bp composite sequence. The single complete open reading frame of 1872 bp encodes PCK1, a 624 amino acid polypeptide with a predicted molecular mass of 68474 Da. Comparison of PCK1 with other ATP-dependent PCKs indicates that PCK1 is significantly larger, mainly due to an N-terminal extension of greater than 65 residues, and reveals high sequence identity across the central portion of the protein, especially over seven sub-sequences. One of these sub-sequences spans motifs common to several ATP-utilising enzymes for phosphate and divalent cation binding. The anti-PCK antiserum recognises a 69 kDa polypeptide on immunoblots of either purified PCK or U. panicoides leaf extracts. However, polypeptides of 63, 62, 61 and 60 kDa are also immunoreactive. Amino terminal sequencing of polypeptides from preparations of purified PCK demonstrates that these smaller polypeptides are related to PCK1, and time course experiments show that these polypeptides arise from the breakdown of PCK during isolation. Northern blot analysis indicates that the 2.7 kb PCK mRNA is abundant in green leaves but not in roots or etiolated shoots. Moreover, PCK mRNA levels increase gradually during greening, reaching maximum levels after about 84 h.  相似文献   

12.
13.
Homogenates of mung bean cotyledons were subjected to equilibrium density centrifugation on linear sucrose gradients and the positions of the various organelles determined by assay of marker enzymes. Measurement of phospholipid distribution on such gradients showed that the major peak of phospholipid at a density of 1.11 to 1.13 grams per cubic centimeter coincided with the position of the endoplasmic reticulum (ER), confirming ultrastructural evidence that storage parenchyma cells are rich in ER. Germination and seedling growth were accompanied by a rapid decline in ER-associated phospholipid but a marked increase in the ER marker enzyme NADH cytochrome c reductase. Similar experiments with developing seeds indicated that the amount of ER-associated phospholipid increases during cotyledon expansion reaching a maximum during seed maturation. There was no subsequent decline during seed desiccation, instead ER-associated phospholipid levels were maintained in the dry seed until germination when catabolism was initiated 12 to 24 hours after the start of imbibition. This timing indicates that the observed ER breakdown is not an expression of the overall senescence of the cotyledons, but may represent the dismantling of the extensive rough ER used for reserve protein synthesis during cotyledon development.  相似文献   

14.
15.
16.
17.
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.  相似文献   

18.
19.
Of the eight nuclear genes in the plant multi-gene family which encodes the small subunit (rbcS) of Petunia (Mitchell) ribulose bisphosphate carboxylase, one rbcS gene accounts for 47% of the total rbcS gene expression in petunia leaf tissue. Expression of each of five other rbcS genes is detected at levels between 2 and 23% of the total rbcS expression in leaf tissue, while expression of the remaining two rbcS genes is not detected. There is considerable variation (500-fold) in the levels of total rbcS mRNA in six organs of petunia (leaves, sepals, petals, stems, roots and stigmas/anthers). One gene, SSU301, showed the highest levels of steady-state mRNA in each of the organs examined. We discuss the differences in the steady-state mRNA levels of the individual rbcS genes in relation to their gene structure, nucleotide sequence and genomic linkage.  相似文献   

20.
A cDNA library from RNA of senescing cucumber cotyledons was screened for sequences also expressed in cotyledons during post-germinative growth. One clone encodes ATP-dependent phosphoenolpyruvate carboxykinase (PCK; EC 4.1.1.49), an enzyme of the gluconeogenic pathway. The sequence of a fulllength cDNA predicts a polypeptide of 74397 Da which is 43%, 49% and 57% identical to bacterial, trypanosome and yeast enzymes, respectively. The cDNA was expressed in Escherichia coli and antibodies raised against the resultant protein. The antibody recognises a single polypeptide of ca. 74 kDa, in extracts of cotyledons, leaves and roots. The cucumber genome contains a single pck gene. In the seven-day period after seed imbibition, PCK mRNA and protein steady-state levels increase in amount in cotyledons, peaking at days 2 and 3 respectively, and then decrease. Both accumulate again to a low level in senescing cotyledons. This pattern of gene expression is similar to that of isocitrate lyase (ICL) and malate synthase (MS). When green cotyledons are detached from seedlings and incubated in the dark, ICL and MS mRNAs increase rapidly in amount but PCK mRNA does not. Therefore it seems unlikely that the glyoxylate cycle serves primarily a gluconeogenic role in starved (detached) cotyledons, in contrast to post-germinative and senescing cotyledons where PCK, ICL and MS are coordinately synthesised. While exogenous sucrose greatly represses expression of icl and ms genes in dark-incubated cotyledons, it has a smaller effect on the level of PCK mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号