首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rates of non-electrolyte and ion diffusion across bilayer membranes consisting of choline plasmologens or of their alkyl and acyl analogs were studied. The influx of [14C]glucose, 86Rb+ and 36Cl? into small unilamellar vesicles made from a semisynthetic choline plasmalogen and from synthetic diacyl, alkylacyl and dialkyl analogs with comparable side chain compositions were measured. Rates of glucose and Rb+ diffusion are about equal in alkenylacyl- and diacyl-glycerophosphocholine (GPC) bilayers, but are reduced in dialkyl-GPC membranes; the permeability coefficients correlate with the packing densities of the respective choline glycerophospholipids in monolayers at the air water interface. Rates of chloride diffusion are consistently higher in membranes formed from phospholipids containing alkenyl or alkyl other bonds as compared to the diacyl analogs. Highest rates of Cl? diffusion are observed with choline plasmalogen vesicles. The phospholipid side chain composition has little influence on Cl? permeation, but glucose and Rb+ diffusion are markedly affected. Incorporation of cholesterol (30 mol%) into choline plasmalogen membranes reduces their solute permeability by approximately 70%. A similar effect is found with the other choline phospholipid analogs. Thus, the choline phospholipid—cholesterol interaction, as far as it is reflected in reduced bilayer permeability, is not influenced by the presence of the alkenylether bond of plasmalogens.  相似文献   

2.
In cultured glioma cells, plasma membrane (PM) is enriched in phosphatidylserine (PtdSer) and plasmalogens (1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine). Serine can be a precursor of headgroups of both ptdSer and ethanolamine phosphoglycerides (PE) including plasmalogens and non-plasmalogen PE (NP-PE). Synthesis of phospholipids was investigated at the subcellular level using established fractionation procedures and incorporation of [3H(G)]L-serine and [1,2-14C]ethanolamine. Specific radioactivity of PtdSer from [3H]serine was 2-fold greater in PM than in microsomes, reaching maximum by 2–4 h. Labeled plasmalogen from [3H]serine appeared in PM by 4 h and increased to 48 h, whereas almost no plasmalogen accumulated in microsomes within 12 h. In contrast, labeled plasmalogen from [1,2-14C]ethanolamine appeared in both PM and microsomes at early incubation times and became enriched in PM beyond 12 h. Thus, in glioma cells: (1) greater and faster accumulation of labeled PtdSer in PM may reflect direct synthesis from serine within PM; (2) PM is a major source of PtdSer for decarboxylation and PE synthesis; (3) NP-PE in both PM and microsome provides headgroup for synthesis of plasmalogen; and, (4) plasmalogen synthesis may involve different intracellular pools depending on headgroup origin.Abbreviations NP-PE nonplasmenylethanolamine phosphoglycerides including both diacyl and alkylacyl species - PE total ethanolamine phosphoglycerides: plasmalogen-plasmenylethanolamine or alkenylacyl ethanolamine phosphoglyceride (1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) - PL phospholipid - PM plasma membrane - PtdCho phosphatidylcholine - PtdSer phosphatidylserine  相似文献   

3.
The phospholipid composition and acyl, alkyl, and alkenyl group compositions of diacyl, alkylacyl, and alkenylacyl phosphoglycerides of M. javanica were investigated. Phospholipid was comprised of 61.7% choline phosphoglyceride, 22.0% ethanolamine phosphoglyceride, and smaller quantities of six other lipids. Phospholipid fatty acid was more unsaturated than neutral lipid fatty acid and contained 61.3% octadecenoic (18:1) acid. Fatty acid at the 1-position of diacyl phospholipids was shorter and more saturated than that at the 2-position. Compared to choline phosphoglyceride, ethanolantine phosphoglyceride contained less 18:1 and 20:5 and more 18:0 and 20:0 acid. Alkenylacyl and alkylacyl compounds comprised 34.6% and 9.3%, respectively, of the ethanolamine phosphoglyceride but only 0.5% and 0.6% of the choline phosphoglyceride. Alkenylacyl and alkylacyl ethanolamine phosphoglycerides contained a smaller percentage of 20-carbon polyunsaturated acid at their 2-positions than did their diacyl analogue. At least 95% of the alkenyl and alkyl groups were 18:0 compounds. Tomato roots did not contain alkenylacyl or alkylacyl phosphoglycerides; their occurrence in M. javanica is a significant biochemical difference between the nematode and its host.  相似文献   

4.
5.
6.
In the present study the phase behavior of multilamellar dispersions of 1-O-(1′-alkenyl)-2-oleoyl-glycerophosphoethanolamine (ethanolamine plasmalogen), 1-O-alkyl-2-oleoyl-glycerophosphoethanolamine and 1-acyl-2-oleoyl-glycerophosphoethanolamine was compared using differential scanning calorimetry (DSC) and 31P-NMR. The three compounds differed only in the type of bonding (vinyl ether, alkyl ether or acyl ester) linking the aliphatic moiety to position 1 of sn-glycerol.The gel to liquid-crystalline phase transition temperature as determined by DSC was lowest for ethanolamine plasmalogen (26°C) and was similar for the alkylacyl and diacyl analogs (29.5° and 30°C, respectively). Enthalpies of the G → L phase transition were not significantly different for the three phospholipids tested.Ethanolamine plasmalogen undergoes the lamellar to hexagonal phase transition at 30°C, the analogous alkylacyl-glycerophosphoethanolamine(alkylacyl-GPE) and diacyl-GPE at 53°C and 69°C, respectively. Thus, an alkenyl ether bond in position 1 of sn-glycerol, the structural characteristic of plasmalogens, effectively stabilizes the hexagonal HII arrangement of ethanolamine glycerophospholipids, while it has relatively little effect on destabilization of the lamellar gel state.  相似文献   

7.
The preparation of phosphatidal ethanolamine (Pal-E) from the ethanolamine phosphatide (EP) fraction of bovine brain white matter is described. The method is based upon the resistance of the plasmalogen 2-acyl linkage to mild alkaline hydrolysis in the presence of methanol and in the absence of chloroform. The average yield was 62% of the Pal-E originally present in the EP preparations. The IR, NMR, and ORD spectra of Pal-E were as expected on the basis of the groups present. The average molar absorbancy index at 6.02 μ was 177. The presence of signals at 260.5 and 254.5 cpm in the NMR spectrum, along with the results obtained from the IR spectrum, allowed the unequivocal assignment of the cis-configuration to the 1-alkenyl linkage. No deviations from plain positive ORD curves were seen. The distribution of hydrocarbon residues was ascertained from GLC. The aldehydogenic residues on the 1-position contained 41% of normal olefinic unsaturation in that portion of the chain exclusive of the 1-alkenyl group. Phosphatidalkyl ethanolamine was isolated from EP preparation and, after direct quantification, shown to account for 7% of the phosphorus of the fraction.  相似文献   

8.
9.
The administration of ethanolamine to adult male mice resulted in a significant increase in ethanolamine kinase activity in liver and kidney. Similarly, choline administration resulted in a significant increase in choline kinase activity in liver and kidney. The administration of ethanolamine resulted in enhancement of choline kinase activity concomitantly with ethanolamine kinase activity in liver and kidney. The administration of choline, however, did not result in any significant increase in ethanolamine kinase activity in liver or kidney. Cycloheximide administration along with choline-ethanolamine prevented the increase in kinase activity in liver and kidney. The results obtained have been discussed in relation to the regulatory role of choline kinase and ethanolamine kinase by de novo synthesis in response to enhanced substrate concentration, the secondary nature of choline kinase induction on ethanolamine administration, and possible distinction between choline kinase and ethanolamine kinase.  相似文献   

10.
The aim of the present study is to investigate the effect of ethanolamine plasmalogens on the oxidative stability of cholesterol-rich membranes by comparing it with that of diacyl glycerophosphoethanolamine, using bovine brain ethanolamine plasmalogen (BBEP) or egg yolk phosphatidylethanolamine (EYPE)-containing large unilamellar vesicles (LUVs) and the water-soluble radical initiator AAPH. Electron microscopic observation and particle size measurement visually demonstrated that ethanolamine plasmalogens protect cholesterol-rich phospholipid bilayers from oxidative collapse. Lipid analyses suggested that the effect of ethanolamine plasmalogens in stabilizing membranes against oxidation is partly due to the antioxidative action of plasmalogens involved in scavenging radicals at vinyl ether linkage.  相似文献   

11.
The sequential methylation of ethanolamine (Etn) or phosphorylethanolamine to the corresponding choline (Cho) derivatives was studied in both undifferentiated and retinoic acid (RA) differentiated human neuroblastoma clones LA-N-1 and LA-N-2. Conversion of Etn derivatives to the respective Cho metabolites was low in both cell types. However, after treatment of the cultures with ethanol or RA, the methylation of phosphoryl-Etn was stimulated while that of phosphatidyl-Etn was severely reduced in both cholinergic LA-N-2 and catecholaminergic LA-N-1 cells.Abbreviations Etn ethanolamine - MeEtn monomethylethanolamine - Me2Etn dimethylethanolamine - Cho choline - PEtn phosphorylethanolamine - PtdEtn phosphatidylethanolamine - LPtdEtn lysophosphatidylethanolamine - RA retinoic acid  相似文献   

12.
The uptake of octyl ethanolamine (C8EA) by Pseudomonas pseudoalcaligenes was determined at pH 7.1-10.0. At pH 9.1 the total uptake was nearly three times higher and at pH 10.0 four times higher than at pH 7.1. Also the initial rate of uptake was lowest at pH 7.1. At pH 7.1 five to ten times higher concentrations of C8EA were needed than at pH 9.1 to achieve the same degree of leakage of cytoplasmic constituents. The results support the hypothesis that penetration of the bacterial cytoplasmic membrane by C8EA in its uncharged form is favoured. This takes place particularly with high pH in the suspending medium. In the cytoplasm, the pH is lower, and C8EA becomes more protonated. This will prevent back diffusion, promote accumulation and enhance membrane interaction and toxicity at high pH.  相似文献   

13.
Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono?/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research.  相似文献   

14.
15.
For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.  相似文献   

16.
The lipids of the Caldariella group of extremely thermophilic acidophilic bacteria are based on a 72-membered macrocyclic tetraether made up from two C40 diol units and either two glycerol units or one glycerol and one nonitol. The C40 components have the 16,16′-biphytanyl skeleton and the detailed structure of three of them is established.  相似文献   

17.
    
  相似文献   

18.
Recent studies have implicated accelerated sarcolemmal phospholipid catabolism as a mediator of the lethal sequelae of atherosclerotic heart disease. We have demonstrated that plasmalogens are the predominant phospholipid constituents of canine myocardium and that plasmalogens are hydrolyzed by a novel calcium independent plasmalogen selective phospholipase A2. Since the activities of phospholipases are modulated by the molecular dynamics and interfacial characteristics of their phospholipid substrates, we compared the molecular dynamics of plasmenylcholine and phosphatidylcholine vesicles by electron spin resonance spectroscopy and deuterium magnetic resonance spectroscopy. Plasmenylcholine vesicles have separate and distinct molecular dynamics in comparisons to their phosphatidylcholine counterparts as ascertained by substantial decreases in the angular fluctuations and motional velocities of probes attached to their sn-2 aliphatic constituents. Furthermore, since free radical oxidation of myocardial lipid constituents occurs during myocardial ischemia and reperfusion, we demonstrated that 1O2 mediated oxidation of plasmenylcholine resulted in the generation of several products which have chromatographic characteristics and molecular masses corresponding to 2-acyl lysophosphatide derivatives. Taken together, these studies underscore the biologic significance of the predominance of sarcolemmal plasmalogens present in mammalian myocardium and suggest that their catabolism by plasmalogen selective phospholipases and/or oxidative processes may contribute to the lethal sequelae of myocardial ischemia.  相似文献   

19.
20.
Choline kinase, the first enzyme in the CDP-choline pathway for phosphatidylcholine biosynthesis, was purified 26,000-fold from rat liver to a specific activity of 143,000 nmol.min-1.mg-1 protein. The subunit molecular mass was 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the apparent native molecular mass was 160 kDa by size exclusion chromatography, suggesting a tetrameric structure. Two peaks of choline kinase activity were obtained by chromatofocusing. These isoforms eluted at pH 4.7 (CKI) and 4.5 (CKII). CKII appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Peptide mapping of two isoforms indicated a high degree of similarity, although there were peptides not common to both. Ethanolamine kinase activity copurified with both isoforms. The ratio of choline to ethanolamine kinase activity was 3.7 +/- 0.7 throughout the purification procedure. Choline and ethanolamine were mutually competitive inhibitors. The respective Km values, 0.013 and 1.2 mM, were similar to the Ki values of 0.014 and 2.2 mM. An antibody raised against CKII immunoprecipitated both choline and ethanolamine kinase activities from liver cytosol at the same titer. These data suggest that both activities reside on the same protein and occur at the same active site. Similarly, both activities were immunoprecipitated from brain, lung, and kidney cytosols. Western blot analysis showed both purified liver isoforms, as well as brain, lung and kidney enzymes, to have a molecular mass of 47 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号