首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探讨人野生型p53(wt-p53)基因增强大肠癌细胞化疗敏感性的分子生物学机制,将携带wt p53基因的质粒分别转染两种p53基因突变的人大肠癌细胞系HT-29及SW620,分析细胞中p53及细胞周期蛋白D1(cyclin D1)蛋白的表达水平;将化疗药物5 氟尿嘧啶(5-fluorouracil,5-FU)以不同浓度、不同时间分别作用于HT-29及SW620细胞,另外将已转染wt-p53基因的大肠癌细胞用5-FU进行诱导,Western印迹分析上述干预条件下细胞中p53蛋白及细胞周期蛋白D1表达水平的变化;流式细胞术检测wt p53基因联合5-FU组及对照组中细胞凋亡的改变情况.结果表明,wt-p53基因能增加癌细胞中细胞周期蛋白D1的表达,与wt-p53基因呈剂量依赖性关系;5-FU则降低其蛋白表达,与5-FU呈时间和剂量依赖性关系,而5-FU所致的细胞周期蛋白D1表达水平的降低在细胞预先转染了wt- p53基因时会被抑制;wt-p53基因与5-FU联合使用能提高大肠癌细胞凋亡率.结果提示,wt-p53基因可提高大肠癌细胞中细胞周期蛋白D1的表达水平,并抑制5-FU所致的细胞周期蛋白D1降解,从而提高大肠癌细胞对化疗药物5-FU的敏感性.  相似文献   

2.
5-Fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for colorectal cancer treatment, but colorectal cancer cells are often resistant to primary or acquired 5-FU therapy. Several studies have shown that miR-21 is significantly elevated in colorectal cancer. This suggests that this miRNA might play a role in this resistance. In this study, we investigated this possibility and the possible mechanism underlying this role. We showed that forced expression of miR-21 significantly inhibited apoptosis, enhanced cell proliferation, invasion, and colony formation ability, promoted G1/S cell cycle transition and increased the resistance of tumor cells to 5-FU and X radiation in HT-29 colon cancer cells. Furthermore, knockdown of miR-21 reversed these effects on HT-29 cells and increased the sensitivity of HT-29/5-FU to 5-FU chemotherapy. Finally, we showed that miR-21 targeted the human mutS homolog2 (hMSH2), and indirectly regulated the expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). These results demonstrate that miR-21 may play an important role in the 5-FU resistance of colon cancer cells.  相似文献   

3.
5-Fluorouracil (5-FU) is a principal drug for the treatment of colorectal cancer. Due to its low response and high toxicity, synergistic effects of 5-FU in combination with other drugs have been widely researched. This study investigated whether oroxylin A improved the sensitivity of HT-29 human colon cancer cells to 5-FU. A correlation between COX-2 inhibition by oroxylin A and a synergistic effect of 5-FU on the growth of HT-29 cells was observed, and a COX-2 pathway for this effect was recognized; oroxylin A evidently elevated the level of reactive oxygen species in HT-29 cells, which subsequently inhibited COX-2 expression and enhanced the susceptibility of HT-29 cells to 5-FU. Likely also related to COX-2 inhibition, oroxylin A decreased PGE(2) levels in HT-29 cells. The synergistic effect of 5-FU induced by oroxylin A was also found in the suppression of Bcl-2 and in the activation of P53, Bax, PARP, and procaspase-3 proteins in HT-29 cells. Ultimately, a combination of 5-FU with oroxylin A significantly reduced the growth of HT-29 tumors in nude mice compared with treatment with 5-FU or oroxylin A alone. In conclusion, a combination of 5-FU and oroxylin A has a significant synergistic effect in the inhibition of HT-29 cell proliferation in vitro and controls HT-29 tumor growth in vivo. This synergistic effect may be mainly related to COX-2 inhibition by oroxylin A in HT-29 cells.  相似文献   

4.
5-Fluorouracil (5-FU) is one of the widely used chemotherapeutic drugs targeting various cancers, but its chemo-resistance remains as a major obstacle in clinical settings. In the present study, HT-29 colon cancer cells were markedly sensitized to apoptosis by both 5-FU and genistein compared to the 5-FU treatment alone. There is an emerging evidence that genistein, soy-derived phytoestrogen, may have potential as a chemotherapeutic agent capable of inducing apoptosis or suppressing tumor promoting proteins such as cyclooxygenase-2 (COX-2). However, the precise mechanism of cellular cytotoxicity of genistein is not known. The present study focused on the correlation of AMPK and COX-2 in combined cytotoxicity of 5-FU and genistein, since AMPK is known as a primary cellular homeostasis regulator and a possible target molecule of cancer treatment, and COX-2 as cell proliferation and anti-apoptotic molecule. Our results demonstrated that the combination of 5-FU and genistein abolished the up-regulated state of COX-2 and prostaglandin secretion caused by 5-FU treatment in HT-29 colon cancer cells. These appear to be followed by the specific activation of AMPK and the up-regulation of p53, p21, and Bax by genistein. Under same conditions, the induction of Glut-1 by 5-FU was diminished by the combination treatment with 5-FU and genistein. Furthermore, the reactive oxygen species (ROS) was found as an upstream signal for AMPK activation by genistein. These results suggested that the combination of 5-FU and genistein exert a novel chemotherapeutic effect in colon cancers, and AMPK may be a novel regulatory molecule of COX-2 expression, further implying its involvement in cytotoxicity caused by genistein.  相似文献   

5.
6.
AZD1775 is a small molecule WEE1 inhibitor used in combination with DNA-damaging agents to cause premature mitosis and cell death in p53-mutated cancer cells. Here we sought to determine the mechanism of action of AZD1775 in combination with chemotherapeutic agents in light of recent findings that AZD1775 can cause double-stranded DNA (DS-DNA) breaks. AZD1775 significantly improved the cytotoxicity of 5-FU in a p53-mutated colorectal cancer cell line (HT29 cells), decreasing the IC50 from 9.3 μM to 3.5 μM. Flow cytometry showed a significant increase in the mitotic marker pHH3 (3.4% vs. 56.2%) and DS-DNA break marker γH2AX (5.1% vs. 50.7%) for combination therapy compared with 5-FU alone. Combination therapy also increased the amount of caspase-3 dependent apoptosis compared with 5-FU alone (4% vs. 13%). The addition of exogenous nucleosides to combination therapy significantly rescued the increased DS-DNA breaks and caspase-3 dependent apoptosis almost to the levels of 5-FU monotherapy. In conclusion, AZD1775 enhances 5-FU cytotoxicity through increased DS-DNA breaks, not premature mitosis, in p53-mutated colorectal cancer cells. This finding is important for designers of future clinical trials when considering the optimal timing and duration of AZD1775 treatment.  相似文献   

7.
5-Fluorouracil (5-FU) is a widely used chemotherapy agent for breast cancer, although drug resistance is a critical issue regarding the use of this agent in the disease. Calcium signaling is a well-known main cause of proliferation and apoptosis in breast cancer cells. Although previous studies have implicated TRPV1 inhibitor, anticancer, and apoptotic roles of Hypericum perforatum (HPer) in several cells, the synergistic inhibition effects of HPer and 5-FU in cancer and the stimulation of ongoing apoptosis have not yet been clarified in MCF-7 cells. Therefore, we investigated the apoptotic and antioxidant properties of 5-FU with/without HPer through activation of TRPV1 in MCF-7 cells. The MCF-7 cells were divided into four groups: the control group, the HPer-treated group (0.3 mM), the 5-FU-treated group (25 μM), and the 5-FU+HPer-treated group. The intracellular free calcium ion concentration ([Ca2+]i) increased with 5-FU treatments, but they decreased with the HPer and HPer+5-FU treatments. The [Ca2+]i is further decreased in the four groups by TRPV1 channel antagonist (capsazepine and 0.01 mM) treatments. However, mitochondrial membrane depolarization and apoptosis levels, and the PARP1, caspase 3, and caspase 9 expression levels were increased by 5-FU treatment, although the values were decreased by the HPer and 5-FU+HPer treatments. Cell viability level was also decreased by 5-FU treatment. In conclusion, antitumor and apoptosis effects of 5-FU are up-regulated by activation of TRPV1 channels, but its action was down-regulated by HPer treatment. It seems that HPer cannot be used for increasing the antitumor effect of 5-FU through modulation of the TRPV1.  相似文献   

8.
Réti A 《Magyar onkologia》2010,54(4):377-381
The elevated cyclooxygenase-2 (COX-2) expression has been shown to affect the carcinogenesis and tumor progression processes, including cell proliferation, motility and angiogenesis. COX-2 is overexpressed in approximately 80% of sporadic colorectal carcinomas and COX-2 enzyme is the best defined target of non-steroidal anti-inflammatory drugs (NSAIDs). In the chemotherapy of colorectal carcinomas 5-fluorouracil (5-FU) has been the most important of the basic drugs for more than 40 years. In order to improve the effectiveness of 5-FU therapy different biological modifiers i.e. inhibitors of its catabolism or activators of anabolism have been studied recently. The rate-limiting enzyme of 5-FU catabolism is dihydropyrimidine dehydrogenase (DPD) since more than 80% of the administered 5-FU is catabolized by DPD. Tumoral DPD has become of clinical interest because elevated intratumoral DPD can decrease the tumor response to 5-FU therapy. The main purpose of our experiments was to investigate the effect of COX inhibitors on the efficacy of 5-FU on high and low COX-2 expressing HCA-7 and HT-29 human colon adenocarcinoma cell lines, respectively, and also on xenografts derived from HT-29 cells. The cytotoxic and antitumor effects of 5-FU in the presence of low doses of indomethacin (non-selective COX-2 inhibitor) and that of NS-398 (highly selective COX-2 inhibitor) on HT-29 and HCA-7 cells and also on the HT-29 xenograft were investigated. In addition, our intention was to understand the mechanism(s) by which NSAIDs could enhance the cytotoxic effect of 5-FU. Our data indicated that the elevated COX-2 expression of HCA-7, the collagen-induced HT-29-C cells and of the HT-29 xenograft were associated with reduced 5-FU sensitivity. Based on the fact that at the same time DPD activity was also increased it might be conceivable that a possible explanation for the decrease of 5-FU sensitivity is the co-existence of high COX-2 and DPD activity. Indomethacin or NS-398 enhanced in a simultaneous and significant manner the sensitivity and cytotoxic effect of 5-FU on high COX-2 expressing cells and xenografts through the modulation of DPD - decrease of its mRNA expression and/or enzyme activity. Based on our results it could be presumable that 5-FU efficacy is limited by the COX-2 associated high DPD expression and activity in patients with colorectal cancer as well, therefore further clinical studies are warranted to decide if NSAIDs in the therapeutic protocol might improve the antitumor potency of 5-FU. Réti A. Application of non-steroidal anti-inflammatory drugs to enhance 5-fluorouracil efficacy in experimental systems.  相似文献   

9.
Trans-beta-nitrostyrene (TBNS) has been reported to be a potent inhibitor of protein phosphatases PTB1 and PP2A and to display a pro-apoptotic effect even in multidrug resistant tumour cells. Here we compared the anti-tumour potential of TBNS with 5-fluorouracil (5-FU) as the standard chemotherapeutic agent for colorectal cancer in LoVo cells. Resistance to 5-FU based therapy might be a consequence of 5-FU's delayed effect requiring long-term effective concentrations in the tumour tissue. Thus, alternatives like platin containing drugs with a more rapid effect have been introduced recently. Compared to 5-FU TBNS displayed a faster cytotoxic and pro-apoptotic effect. A 50% decrease in viability was observed already after 8 h with TBNS while 5-FU displayed no significant effect before 48 h. DNA fragmentation and caspase-3 assays confirmed the more rapid apoptotic effect of TBNS. Since apoptosis affects individual cells these results about a rapidly induced apoptosis were further studied on a single cell level in microscopic assays of caspase-3 and caspase-8 activation. Adducts of trans-beta-nitrostyrene displayed an anti-tumour effect comparable to TBNS which suggests the possibility of creating adducts with optimised tissue targeting. Finally, the calculation of a drug combination index displayed a synergistic effect for the combination of TBNS and 5-FU in Lovo as well as in HT-29 and HCT116 colon cancer cells.  相似文献   

10.
A current challenge is to define the biological characteristics of colon tumor cells resistant to chemotherapy. Distinct sub-populations of mucus-secreting cells were previously obtained from the colon cancer cell line HT-29 after long-term treatment with the anti-cancer drugs, 5-fluorouracil (5-FU) and methotrexate (MTX). Since mucins are increasingly implicated as playing a role in carcinogenesis, we studied the pattern of mucin expression in two HT-29 clones of mucus-secreting and two clones of enterocyte-like phenotype which differ in their capacity to resist to 5-FU and/or MTX. The expression of both transmembrane (MUC1, MUC3, MUC4) and secreted gel-forming (MUC2, MUC5AC, MUC5B, MUC6) mucins in clones was studied by northern and/or western blotting. The four HT-29 clones showed three cellular phenotypes: (1) The mucus-secreting clone HT29-5F12 consists of unpolarized cells with mucus secretions that have anti-colonic mucin immunoreactivity, and mainly expresses MUC2 and is resistant to 5-FU and sensitive to MTX; (2) The mucus-secreting clone HT29-5M21 forms a monolayer of polarized cells with strong anti-gastric mucin immunoreactivity and mainly expresses MUC5AC and MUC5B and is resistant to MTX and sensitive to 5-FU; (3) The two enterocyte-like clones, HT29-5F7 and HT29-5M12 are resistant to both MTX and 5-FU and express mainly MUC1 and MUC5B, respectively. These clones which originate from a same colorectal tumour and display different patterns of mucin expression as well as differing resistance to MTX and 5-FU will make useful in vitro models for studying the potential role of mucins or other biological markers in drug resistance pathways.  相似文献   

11.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

12.
The evaluation of cytotoxic and apoptotic activities of silver nanoparticles (Ag-NPs) synthesized by aqueous extract of Prosopis farcta was investigated against lung (A549) and colon (HT-29) cell lines. The cytotoxic activity of nanoparticles was performed using MTT assay, while their apoptotic activity was tested using TUNEL method. The obtained results of MTT showed that the cell viability of A549 was dependent on the nanoparticles concentration and incubation time. Therefore, although the cytotoxic effect increased as the Ag-NPs concentration and incubation time heightened, yet the viability of HT-29 cells seems to be dependent only on the incubation time. The apoptotic results of the nanoparticles showed more than 50% of apoptosis on A549 and HT-29 cell lines, which in this case, HT-29 demonstrated 100% apoptosis at concentrations of more than 400 µg/ml. It seems that Ag-NPs synthesized using P. farcta extract can serve as anti-cancer agent in the treatment many cancers through creating or discovering new drug forms.  相似文献   

13.
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40–55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56–85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.  相似文献   

14.
15.
In this study, a series of 10 novel copper (II) and silver complexes of 1,3-diaryltriazene-substituted sulfonamides was synthesised. All the synthesised ligands and their metal complexes were assessed for in vitro cytotoxicity against human colorectal adenocarcinoma (DLD-1), cervix carcinoma (HeLa), breast adenocarcinoma (MDA-MB-231), colon adenocarcinoma (HT-29), endometrial adenocarcinoma (ECC-1), prostate cancer (DU-145 and PC-3), normal embryonic kidney (HEK-293), normal prostate epithelium (PNT-1A), and normal retinal pigment epithelium (ARPE-19) cells. Most of the metal complexes from the series showed to be more active against all cancerous cells than the uncomplexed 1,3-diaryltriazene-substituted sulfonamides, and lower cytotoxic effects observed on normal cells. Most of the Cu (II) and Ag (I) metal complexes from the presented series showed high cytotoxic activity against HeLa cells with IC50 values ranging from 2.08 to >300?µM. Specifically, compound L3-Ag showed one of the highest cytotoxicity against all cancer cell lines with IC50 values between 3.30 to 16.18?µM among other tested compounds.  相似文献   

16.
17.
Synthesis and anticancer effect of chrysin derivatives   总被引:26,自引:0,他引:26  
A series of chrysin derivatives, prepared by alkylation, halogenation, nitration, methylation, acetylation and trifluoromethylation, were tested in vitro against human gastric adenocarcinoma cell line (SGC-7901) and colorectal adenocarcinoma (HT-29) cells. Among these derivatives of chrysin, 5,7-dimethoxy-8-iodochrysin 3 and 8-bromo-5-hydroxy-7-methoxychrysin 11 have the strongest activities against SGC-7901 and HT-29 cells, respectively. 5,7-Dihydroxy-8-nitrochrysin 12 were found to have strong activities against both SGC-7901 and HT-29 cells.  相似文献   

18.
Neural stem cell (NSC) culture is a remarkable tool to investigate the potential therapeutic benefits of drugs in neurological diseases. The purpose of this study was to determine the effect of melatonin on proliferation and differentiation of NSCs in vitro. NSCs were isolated and expanded from mouse embryonic E14 cortex, and the effect of various concentrations of melatonin (0.05, 0.1, 0.5, 1, 5 and 10 μM) on NSC proliferation was assessed by MTT and neurosphere assay. Results showed that melatonin significantly increased NSC viability and NSC proliferation in a dose-dependent manner, in comparison to controls. Similarly, neurosphere formation frequency and cell counts increased significantly with increasing melatonin concentrations and reached its peak at 0.5 μM, in comparison to controls. Moreover, NSCs treated with either low (0.05 µM) or high concentrations (5 µM) of melatonin showed that the mean percentage of glial fibrillary acidic protein (GFAP) positive cells were not significantly different in PDGF or melatonin at 5 μM, in comparison to controls. However, low melatonin concentrations (0.05 µM) showed a slight significant increase in comparison to controls and PDGF. On the other hand, both concentrations of melatonin treatment significantly increased the percentage of myelin basic protein (MBP) positive cells (oligodendrocytes), in comparison to controls and to PDGF. Our results demonstrated, for the first time, that melatonin increased oligodendrocyte differentiation from NSCs. These results suggest that melatonin might have a potential therapeutic effect for some neurological diseases that involve oligodendrocyte and myelin pathologies.  相似文献   

19.
We investigated the efficacy of a powerful antagonist of bombesin/gastrin-releasing peptide (BN/GRP) RC-3940-II administered as a single agent or in combination with cytotoxic agents on the growth of HT-29, HCT-116 and HCT-15 human colon cancer in vitro and in vivo. GRP-receptor mRNA and protein were found in all three cell lines tested. Exposure of HT-29 cells to 10 μM RC-3940-II led to an increase in the number of cells blocked in S phase and G2/M and cells with lower G0/G1 DNA content. Similar changes on the cell cycle traverse of HT-29 cells could also be seen at lower concentrations of RC-3940-II (1 μM) after pretreatment with 100 nM GRP (14–27), indicating a dose-dependent mechanism of action based on the blockage of BN/GRP induced proliferation of tumor cells at lower concentrations.

Daily in vivo treatment with BN/GRP antagonist RC-3940-II decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice by 25 to 67% (p < 0.005). Combined treatment with RC-3940-II and chemotherapeutic agents 5-FU and irinotecan resulted in a synergistic tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts by 43% to 78%. In HT-29 and HCT-116 xenografts the inhibition for the combinations of RC-3940-II and irinotecan vs. single substances (p < 0.05) was significantly greater.

These findings support the use of RC-3940-II as an anticancer agent and may help to design clinical trials using RC-3940-II in combinations with cytotoxic agents.  相似文献   

20.
Colorectal cancer (CRC) patients with APC mutations do not benefit from 5-FU therapy. It was reported that APC physically interacts with POLβ and FEN1, thus blocking LP-BER via APC's DNA repair inhibitory (DRI) domain in vitro. The aim of this study was to elucidate how APC status affects BER and the response of CRC to 5-FU. HCT-116, HT-29, and LOVO cells varying in APC status were treated with 5-FU to evaluate expression, repair, and survival responses. HCT-116 expresses wild-type APC; HT-29 expresses an APC mutant that contains DRI domain; LOVO expresses an APC mutant lacking DRI domain. 5-FU increased the expression of APC and decreased the expression of FEN1 in HCT-116 and HT-29 cells, which were sensitized to 5-FU when compared to LOVO cells. Knockdown of APC in HCT-116 rendered cells resistant to 5-FU, and FEN1 levels remained unchanged. Re-expression of full-length APC in LOVO cells caused sensitivity to 5-FU, and decreased expression of FEN1. These knockdown and addback studies confirmed that the DRI domain is necessary for the APC-mediated reduction in LP-BER and 5-FU. Modelling studies showed that 5-FU can interact with the DRI domain of APC via hydrogen bonding and hydrophobic interactions. 5-FU resistance in CRC occurs with mutations in APC that disrupt or eliminate the DRI domain's interaction with LP-BER. Understanding the type of APC mutation should better predict 5-FU resistance in CRC than simply characterizing APC status as wild-type or mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号