首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus (HSV) immediate-early (IE) gene expression is initiated via the recruitment of the structural protein VP16 onto specific sites upstream of each IE gene promoter in a multicomponent complex (TRF.C) that also includes the cellular proteins Oct-1 and HCF. In vitro results have shown that HCF binds directly to VP16 and stabilizes TRF.C. Results from transfection assays have also indicated that HCF is involved in the nuclear import of VP16. However, there have been no reports on the role or the fate of HCF during HSV type 1 (HSV-1) infection. Here we show that the intracellular distribution of HCF is dramatically altered during HSV-1 infection and that the protein interacts with and colocalizes with VP16. Moreover, viral protein synthesis and replication were significantly reduced after infection of a BHK-21-derived temperature-sensitive cell line (tsBN67) which contains a mutant HCF unable to associate with VP16 at the nonpermissive temperature. Intracellular distribution of HCF and of newly synthesized VP16 in tsBN67-infected cells was similar to that observed in Vero cells, suggesting that late in infection the trafficking of both proteins was not dependent on their association. We constructed a stable cell line (tsBN67r) in which the temperature-sensitive phenotype was rescued by using an epitope-tagged wild-type HCF. In HSV-1-infected tsBN67r cells at the nonpermissive temperature, direct binding of HCF to VP16 was observed, but virus protein synthesis and replication were not restored to levels observed at the permissive temperature or in wild-type BHK cells. Together these results indicate that the factors involved in compartmentalization of VP16 alter during infection and that late in infection, VP16 and HCF may have additional roles reflected in their colocalization in replication compartments.  相似文献   

2.
Treatment of Syrian hamster embryo cells with diverse classes of chemical carcinogens enhanced transformation by a carcinogenic simian adenovirus, SA7. Optimal enhancement was a function of time of chemical addition in relation to time of virus addition and cell transfer. Aflatoxin B1 (AFB1) and the polycyclic hydrocarbons, benzo(a)pyrene (B(a)P), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz(a)anthracene (DMBA) enhanced SA7 transformation when added prior to virus, but inhibited transformation when added after virus adsorption and cell transfer. The enhancement of SA7 transformation was maximal when cytosine arabinoside, caffeine and 6-acetoxy-benzo(a)pyrene (6-ac-B(a)P) were added after virus, but minimal when added before virus. A third class of chemicals, including β-propiolactone (β-PL), methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (Ac-AAF), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methylazoxymethanol acetate (MAM-ac), enhanced SA7 transformation added before, or after, virus inoculation and cell transfer. All chemicals, which induced changes in DNA sedimentation in alkaline sucrose gradients and unscheduled DNA (repair) synthesis in hamster cells, increased the frequency of SA7 transformation. However, several chemicals such as dibenz(a,h)anthracene (DB(a,h)A), benzo(e)pyrene (B(e)P), cytosine arabinoside, and caffeine enhanced SA7 transformation but did not induce DNA sedimentation changes or repair. Chemicals that cause DNA damage, which can be repaired by hamster cells, may enhance viral transformation by providing additional sites for integration of viral DNA during the repair process. Chemicals that apparently do not induce DNA repair synthesis may enhance viral transformation by incorporation of viral DNA into gaps in cell DNA at sites of unrepaired damage during scheduled DNA synthesis.  相似文献   

3.
The effect of trichothecene mycotoxins, deoxynivalenol (DON), fusarenon-X (FX) and nivalenol (NIV), on plaque formation of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) in HEp-2 cells was examined. The 50% effective concentrations (EC50) of DON, FX, and NIV for HSV-1 plaque formation were 160, 56, and 120 ng/ml, respectively. Those for HSV-2 plaque formation were 94, 26, and 50 ng/ml, respectively. These three mycotoxins showed about 2-fold higher selectivity to HSV-2 than to HSV-1. Plaque formation of HSV-1 was not inhibited with trichothecenes at concentrations completely inhibiting plaque formation when cells were treated during virus adsorption period or 15 hr before infection. These results indicate that trichothecenes affect replication of HSV-1 after virus adsorption, but not before or during virus adsorption to the host cells.  相似文献   

4.
Persistent reovirus infection of L cells was established with a serially passaged stock of temperature-sensitive (ts) mutant C(447) containing greater than 90% defective interfering particles. Within a month after establishment of the carrier culture, the ts mutant was replaced by virus that expressed the wild-type (ts+) temperature phenotype (R. Ahmed and A. F. Graham, J. Virol. 23:250-262, 1977). To determine whether the ts+ phenotype of the virus was due to intragenic reversion or to the presence of an extragenic mutation suppressing the original ts defect, several clones were backcrossed to wild-type reovirus, and the progeny of each cross were screened for temperature sensitivity. The results indicated that the original tsC lesion had reverted. However, in two of the seven clones examined, new ts lesions were found. These new ts lesions appeared phenotypically as ts+ due to the presence of extragenic suppressor mutations. Temperature-sensitive mutants representing three different groups were rescued from one suppressed clone, indicating that this ts+ clone contained multiple ts lesions. Among the ts mutants rescued were the initial isolates of a new recombination group which we have designated H. Some of the ts mutants rescued from the suppressed clones are capable of interfering with the growth of wild-type reovirus and may play a role in maintaining the carrier state. The results of this study show that persistently infected L cells contain a genetically heterogeneous population of reovirus even though all virus clones express the ts+ phenotype. It is thus critical to distinguish between genotype and phenotype when analyzing viruses that emerge during persistent infection.  相似文献   

5.
Several clones of Fujinami sarcoma virus (FSV) isolated from a laboratory stock or from mutagenized virus were temperature sensitive (ts) in transformation of cells in culture. When shifted from the permissive (37°C) to the nonpermissive (41.5°C) temperature, the cellular phenotype reverted to normal within 2 h, but it required about 48 h at 37°C to revert back to the transformed morphology. A temperature-resistant (tr) FSV clone was isolated from a tumor of an animal. All ts mutants were tumorigenic in animals but induced tumors only after latent periods of 12 to 25 days, compared to 5 to 6 days with tr virus. The ts lesions of the FSV mutants affected 90% of the phosphorylation of the nonstructural, gag-related 140,000-kilodalton phosphoprotein coded by FSV (p140), but did not affect virus replication or the synthesis of p140. Upon shifting from the permissive to the nonpermissive temperature, p140 was 90% dephosphorylated with an approximate 32P half-life of 20 min. When shifted back to the permissive temperature, the preexisting p140 was rephosphorylated in the absence of protein synthesis within a 90-min test period. Likewise, most of the phosphate of fully phosphorylated p140 was exchanged at the permissive temperature within 30 to 90 min even when protein synthesis was inhibited. However, the protein structure of p140 had a half-life of 5 h at both temperatures. These results prove p140 to be a substrate of reversible phosphorylation. Superinfection and transformation of ts FSV-infected cells maintained at the nonpermissive temperature with acute leukemia virus MC29 failed to phosphorylate p140. It would follow that in vivo phosphorylation of ts p140 is controlled by an FSV-specific mechanism and is a prerequisite, not a consequence, of transformation. p140 of ts FSV recovered from cells maintained at 41.5°C with anti-gag serum was over 10 times less phosphorylated by associated kinase than the same protein recovered from cells at 37°C if assayed in vitro at 20°C. This kinase activity associated with or dissociated from p140 with a half-life of less than 30 min during temperature shifts of ts FSV-infected cells. However, p140 recovered from ts FSV-infected cells maintained at 37°C was phosphorylated by associated kinase in vitro not only at 20°C but also, and essentially at the same level, at 41.5°C. This suggests that the kinase associated with the immunocomplex of p140 of ts FSV is not temperature sensitive. p140 translated in vitro from ts and tr FSV RNA lacked kinase activity. We conclude that a fully phosphorylated p140 is necessary for the maintenance of transformation by FSV. This is consistent with the notion that other highly oncogenic viruses also code for nonstructural phosphoproteins with probable transforming function. A model which postulates that p140 is a substrate of reversible phosphorylation and that the lesion of the ts FSV clones described herein affects association of p140 with a cellular kinase rather than a hypothetical intrinsic kinase activity of the protein is most compatible with our data.  相似文献   

6.
The tsB5 mutant of herpes simplex virus type 1 (HSV-1) strain HFEM was shown previously to be temperature sensitive for accumulation of the mature form of glycoprotein gB, for production or activity of a factor required in virus-induced cell fusion, and for production of virions with normal levels of infectivity. In addition, a previous study showed that virions produced by tsB5 at permissive temperature were more thermolabile than HFEM virions and contained altered gB that did not assume the dimeric conformation characteristic of HFEM. Results presented here demonstrate that, at permissive temperature, tsB5 differs from HFEM in another respect: plaques formed by tsB5 are syncytial on Vero cells (but not on HEp-2 cells), whereas plaques formed by HFEM are nonsyncytial on both cell types. In addition, our results indicate that tsB5 produces an oligomeric form of gB, but that it differs in electrophoretic mobility and stability from the gB dimers of HFEM. The major purpose of this study was to investigate the dependence of the various tsB5 mutant phenotypes on the temperature sensitivity of gB accumulation and on the alterations in oligomeric conformation of gB produced at permissive temperature. For this work the following HSV-1 strains related to tsB5 or HFEM were analyzed: (i) phenotypic revertants selected from tsB5 stocks for nonsyncytial plaque morphology on Vero cells or for ability to form plaques at restrictive temperature (38.5°C); (ii) a plaque morphology variant of HFEM selected for its syncytial phenotype on Vero cells; (iii) temperature-sensitive recombinants previously isolated from a cross between tsB5 and the non-temperature-sensitive syncytial strain HSV-1(MP); and (iv) a phenotypic revertant selected from one of the recombinant stocks for its ability to form plaques at 39°C. These strains were all compared with tsB5 and HFEM at three different temperatures in two different cell lines with respect to plaque formation, yield of infectious progeny, virus-induced cell fusion, and accumulation of gB. The results of our analyses on all the strains tested revealed the following correlations between mutant phenotypes and the accumulation and oligomeric conformation of gB. (i) There was a direct and quantitative relationship between the accumulation in infected cells of infectious progeny and of the mature form of gB, providing strong support for the hypothesis that this form of gB is necessary to the production of infectious virions. The oligomeric conformation of gB characteristic of HFEM is apparently not required for virion infectivity; nor was virion thermostability necessarily related to the presence of the HFEM-like oligomeric form of gB. (ii) The previously reported correlation between temperature sensitivity of gB accumulation and virus-induced cell fusion was confirmed for tsB5 and extended to other virus strains, and coordinate reversion of these traits was also demonstrated, providing support for the hypothesis that gB has a role in virus-induced cell fusion. At 37°C, intermediate between permissive and restrictive temperatures, some of the mutants and partial revertants induced cell fusion despite reduced accumulations of the mature form of gB, suggesting that the amount of mature gB present did not determine the extent of fusion and that other forms of gB as well as other factors should be investigated with regard to the process of cell fusion. (iii) Some of the mutants and partial revertants could form plaques at 38.5°C despite reduced ccumulations of gB and infectious progeny, indicating that the cell-to-cell transmission of viral infection may be at least in part independent of these factors.  相似文献   

7.
Diethylaminoethyl-dextran (DEAE-D) enhanced the infectivity of laryngotracheitis virus (LTV) for chicken kidney (CK) cells when cultures were treated before inoculation with virus and when DEAE-D was present in the inoculum. Infectivity was not increased when cultures were treated after virus had adsorbed to cells; since infection was not synchronized, most of the virus had probably already penetrated the plasma membrane by the time DEAE-D was added. Maximal enhancement occurred when DEAE-D was present in the inoculum. Enhancement of a lesser degree occurred when virus and DEAE-D were mixed, diluted, and inoculated onto cultures. Adsorption of LTV at 37 C as compared to that at 5 C usually yields about a threefold greater number of plaques after a 2-hr adsorption period. However, when DEAE-D was incorporated in the inoculum, greater enhancement occurred at 5 C than at 37 C, and the number of plaques produced at both adsorption temperatures was about equal. Results are compatible with the hypothesis that increased adsorption is a factor in enhancement of infectivity of LTV by DEAE-D.  相似文献   

8.
To assess the role of Fas in lesion development during genital HSV-2 infection, we used a well-established HSV-2 murine model applied to MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) C57BL6 mice. In vitro infection of murine keratinocytes and epithelial cells was used to clarify molecular details of HSV-2 infection. Despite upregulation of Fas and FasL, HSV-2-infected keratinocytes and epithelial cells showed a moderate level of apoptosis due to upregulated expression of the anti-apoptotic factors Bcl-2, Akt kinase and NF-κB. Inflammatory lesions within the HSV-2-infected epithelium of C57BL6 mice consisted of infected cells upregulating Fas, FasL and Bcl-2, uninfected cells upregulating Fas and neutrophils expressing both Fas and FasL. Apoptosis was detected in HSV-2-infected cells and to even higher extent in non-infected cells surrounding HSV-2 infection sites. HSV-2 infection of Fas- and FasL-deficient mice led to increased apoptosis and stronger recruitment of neutrophils within the infection sites. We conclude that the Fas pathway participates in regulation of inflammatory response in the vaginal epithelium at the initial stage of HSV-2 infection.  相似文献   

9.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

10.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

11.

Background

Herpes simplex type II (HSV-2) is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers) associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent) course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M) system, we previously identified the Escherichia coli restriction enzyme (REase) EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T) are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs) with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs) and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome.

Methods and results

Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,), and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class), 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00) at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the 5' and 3' ends of the HSV-2 genome (genomic context coordinates 0.02 and 0.98, respectively) were specificity sites of ZFNs suited for the complete excision of over 60% of HSV-2 genomic material from within infected human cells, through the process of non-homologous end joining (NHEJ). Furthermore, a model concerning a recombinant (ICP10-PK mutant) replication competent HSV-2 viral vector for delivering and transducing a diploid copy (or pair) of the HSV-2-genome-specific ZFN genotype within neuronal tissue, is presented.

Conclusion

ZFNs with specificity to HSV-2 genomic DNA that are precursors of novel host-genome expressed HSV-2 gene-therapeutics or vaccines were identified.  相似文献   

12.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

13.
《Phytomedicine》2014,21(6):857-865
Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1 μg/ml and 1.4 μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2 μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.  相似文献   

14.
In an attempt to induce temperature-sensitive (ts) conditional lethal mutants of rabies virus, stocks of a plaque-purified substrain of strain CVS fixed rabies virus were subjected to mutagenesis by HNO2, 5-fluorouracil, or 5-azacytidine. It was necessary to prepare virus stocks from clones of mutagenized virus selected at random and to test subsequently each stock for possible ts characteristics by measuring its relative capacity for growth at permissive (33 C) and nonpermissive (40.5 C) temperatures. Five ts mutants were detected in tests of 161 clones of mutagenized virus. Each of the mutants exhibited a remarkably low incidence of reversion and little demonstrable “leakiness.” One of the five ts mutants (ts2), which formed formed very small plaques, and another (ts1), which formed plaques of only slightly reduced size, were further characterized. Virus ts1 was more thermostable at 40.5 C than the parental virus, but the ts2 mutant was unchanged in this respect. The ts1 virus exhibited normal pathogenicity for mice, but ts2 virus caused a very irregular death pattern. Both deaths and survivors immune to rabies virus challenge were noted in all groups of mice inoculated with ts2 virus, regardless of the virus dose.  相似文献   

15.
16.
Treatment of hamster embryo cells with diverse classes of chemical carcinogens enhances transformation by a carcinogenic simian adenovirus, SA7. Virus transformed foci selected from plates pretreated with 3-methyl-cholanthrene (MCA), methyl methanesulfonate (MMS) or 7,12-dimethylbenz[a]anthracene (DMBA) and established as cell lines in culture, contained equivalent amounts of SA7 viral genome. However, hamster embryo cultures treated with MMS or nickel sulfate had increased amounts of SA7 DNA integrated into cellular DNA when examined 2--9 days after chemical treatment and viral inoculation. An increased uptake of SA7 DNA was demonstrated in hamster cells treated with MMS during DNA repair synthesis in cells retricted in scheduled DNA synthesis by amino acid deprivation; addition of virus after the repair period did not result in an increased integration of viral DNA. These data suggest that enhancement of viral oncogenesis by chemical carcinogens or mutagens may be related to the formation of additional attachment sites in cellular DNA for insertion of viral DNA, thereby increasing the probability of viral transformation.  相似文献   

17.
We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.  相似文献   

18.
Recent studies indicated that extensive culture of bone marrow-derived mesenchymal stem cells (BMSCs) can lead to malignant transformation, supporting the concept that tumor may originate from adult stem cells. Also, neoplastic transformation of BMSCs induced by virus and ionizing radiation were verified. However, the capacity for BMSCs to become mutated by chemical carcinogens and become precursors of cancer is still poorly understood. In this study, BMSCs were used to test the hypothesis that tumorigenesis can originate from the mutation of stem cells induced by chemical carcinogen. BMSCs were intermittently treated with 10?6 M 4-nitroquinoline 1-oxide (4-NQO) from population doublings level (PDL) 3 until senescence occurred. Proliferation data demonstrated that BMSCs treated with 4-NQO bypassed the senescence phase and exhibited unlimited proliferation and anchorage independence. These cells underwent a malignant transformation that resulted in tumor formation in 12/12 immunodeficient mice that received the cells by tail vein injection. In contrast, spontaneous transformation of BMSCs was observed in 6/12 immunodeficient mice injected with BMSCs that had been cultured over PDL 30 in vitro. For both BMSCs treated with 4-NQO, and BMSCs maintained in long-term culture, their transformation into neoplastic cells was found to involve chromosomal abnormalities, increased telomerase activity, and reduced, or absent, expression of p53. Our results also indicate that BMSCs are susceptible to carcinogen-induced malignant transformation rather than spontaneous transformation. Therefore, carcinogen-induced BMSCs transformation models may be ideal for studying mechanisms associated with the promotion of tumor formation by chemical carcinogens.  相似文献   

19.
Antibody to a synthetic peptide (anti-C3 serum) with the predicted sequence of the C terminus of the Moloney murine sarcoma virus (strain 124) v-mos gene was used in immunoprecipitation experiments with cytoplasmic extracts of a clone of NRK cells infected with ts110 Moloney murine sarcoma virus, termed 6m2 cells. ts110 Moloney murine sarcoma virus codes for two viral proteins of 85,000 and 58,000 Mr, termed P85 and P58, respectively, in nonproducer 6m2 cells maintained at 33°C. Anti-C3 serum specifically recognized [3H]leucine-labeled P85, but not P58, from infected cells maintained at 33°C, whereas antiserum prepared against murine leukemia virus p12 recognized both proteins. Normal serum and anti-C3 serum pretreated with excess C3 peptide did not precipitate P85. Immunoprecipitation experiments after metabolic labeling of 6m2 cells with 32Pi showed that P85 is phosphorylated. Both anti-C3 and anti-p12 sera specifically detected 32P-labeled P85. Cell-free translation of ts110 murine sarcoma virus/murine lukemia virus RNA produces P85, P58, and helper virus protein Pr63gag. Anti-C3 serum specifically precipitated P85 but neither P58 nor Pr63gag. We conclude from these studies that P85 is a product of both the gag and mos genes of ts110 murine sarcoma virus, and, therefore, it is referred to as P85gag-mos. We have not detected any other v-mos gene product in ts110-infected cells.  相似文献   

20.
Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 × 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overproduced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the β regulatory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used. However, in contrast to many β (early) and γ (late) viral polypeptides, the synthesis of infected cell polypeptide number 8 was only minimally reduced when cells infected with serially passaged tsLB2 were incubated at 39°C. The tsLB2 mutation had previously been mapped within the domains of the gene encoding infected cell polypeptide number 4, the function of which was shown to be required for β and γ viral gene expression. It is thus possible that the tsLB2 mutation affects the synthesis of only a subset of the β and γ viral polypeptides. An additional polypeptide, 74.5 × 103 in molecular weight, was abundantly produced in cells infected with a number of tsLB2 passages. This polypeptide was most likely expressed from truncated gene templates within the most abundant, deleted repeats of tsLB2 defective virus DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号