首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of the water soluble 1,2-dimercaptopropanol (BAL) derivative 2,3-dimercapto-1-sulfonate (DMPS) into human red blood cells was found in vitro and the mode of penetration studied in detail. The compound entered erythrocytes in a concentration dependent manner. In contrast to sealed ghosts where inside and outside concentrations reached the same value, DMPS accumulated in intact erythrocytes. Since no binding of DMPS could be detected, the reason for accumulation was assumed to be a conversion of DMPS into chelates or metabolites which penetrated the membrane in a slower rate. A facilitated transport of DMPS mediated by the anion carrier protein was concluded on the basis of the following similarities with the anion transport: inhibition of [14C]DMPS-uptake by N-ethylmaleimide (NEM), tetrathionate (90%), sulfate (50%), 5,5′-dithio bis(2-nitrobenzoic acid) (DTNB) (25%); inhibition of uptake and efflux by 4,4′-diisothiocyano-2,2′-stilbene disulfonate (DIDS) (80%), dipyridamole (55%); temperature dependency (activation energy 24 Kcal/mol); pH-dependency (pH optimum about 6.9); counter-transport; activation of uptake by preincubation with DMPS (transmembrane effect).  相似文献   

2.
1. A partial primary structure (197 residues) of carbonic anhydrase from tiger shark (Galeocerdo cuvieri) erythrocytes has been determined. 2. The amino acid sequence of the enzyme is identical to those of human cytoplasmic carbonic anhydrases (CA I-III) by as much as 52-60%. 3. It is shown that tiger shark CA most closely resembles the CA II isoenzyme of amniotes. 4. Isoelectric focusing and inhibition studies on carbonic anhydrase from dogfish (Squalus acanthias) blood and muscle indicate the presence of the same isoenzyme in shark blood and muscle.  相似文献   

3.
Summary Carbonic anhydrase cytochemistry of the ileal Peyer's patch in foetal and neonatal lambs has indicated secretion from the follicle-associated epithelium to the follicles. Reaction for carbonic anhydrase in the follicle-associated epithelium was found in the luminal plasma membrane, in cytoplasmic vesicles, and in vacuoles containing 50-nm membrane-bounded particles that seemed to be shed to the intercellular space. The lateral plasma membrane was negative for carbonic anhydrase, indicating that formation of carbonic anhydrase-positive particles was restricted to vacuoles. Administration of ferritin to ileal loops of sheep foetuses showed ferritin localized in vesicles and vacuoles of the follicle-associated epithelium followed by exocytosis, together with carbonic anhydrase-positive particles, into the indentations of the lateral cell border. The carbonic anhydrase-positive particles seemed to be transported to the centres of lymphoid follicles where many were attached to the plasma membrane of lymphocytes. Carbonic anhydrase-positive particles were also seen in vesicles and sometimes free in the cytoplasm of the lymphocytes or attached to their nuclear envelope. Light microscopically, carbonic anhydrase reactivity of the follicle-associated epithelium was associated with the early formation of the ileal Peyer's patch at about 100 days gestation. At this time the follicle-associated epithelium showed a strong luminal but at most a week lateral staining. With further foetal development there was a progressive increase in the amount of carbonic anhydrase-positive reaction product in extracellular particles, both along the lateral cell borders of the follicle-associated epithelium and among the lymphocytes of the follicle centres.  相似文献   

4.
About 2% of human kidney carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been found in particulate fractions. Its distribution in the particulate fractions obtained by differential centrifugation suggests that it may be concentrated in the brush border. The particulate enzyme is like red cell carbonic anhydrace C in its susceptibility to inhibition by anions. Particulate carbonic anhydrase is firmly bound to the membrane and is not released by incubation at pH 10.6 and 37 degrees C or by addition of Triton X-100 or deoxycholate. In 10% Triton X-100 at pH 11.3 and 37 degrees C, the particulate enzyme is inactivated with a half time of about 20 min, and this is at least an order of magnitude slower than the inactivation of soluble enzymes in the presence or absence of membranes. The soluble enzymes are inactivated within a few minutes at 25 degrees C in 3-4% sodium dodecyl sulfate, but the particulate enzyme is relatively stable under those conditions, and its half-time of inactivation at 14 degrees C with a detergent-protein ratio of 25 was about 24 h. Gel filtration with Ultragel AcA-44 in sodium dodecyl sulfate indicates that the membrane carbonic anhydrase has a molecular weight of less than 66 000, so its stability is not due to association with large membrane fragments or vesicles. These results suggest that the membrane enzyme may be a different isozyme than the soluble carbonic anhydrases. Although present in relatively small amounts, its localization on the membrane could give it functional significance.  相似文献   

5.
Sarcolemmal membrane vesicle preparations from white and red muscles of rat were found to contain a carbonic anhydrase which was indistinguishable from carbonic anhydrase IV from rat lung. This isozyme appears to account for all of the carbonic anhydrase activity in the sarcolemmal vesicle preparations. Digestion of 39-kDa CA IV with endoglycosidase F reduced the Mr to 36 kDa, suggesting that it contains one N-linked oligosaccharide. Treatment of sarcolemmal vesicles with phosphatidylinositol-specific phospholipase C released all of the activity, indicating that the enzyme is anchored to membranes by a phosphatidylinositol-glycan linkage. White muscle sarcoplasmic reticulum vesicles also contain a small amount of 39-kDa CA IV-type enzyme. A 52-kDa polypeptide in sarcoplasmic reticulum membranes cross-reacts with anti-human CA II and anti-rat CA II antisera, but does not bind to the sulfonamide affinity column. This cross-reacting polypeptide has no detectable CA activity.  相似文献   

6.
Purification and characterization of human salivary carbonic anhydrase   总被引:15,自引:0,他引:15  
A novel carbonic anhydrase was purified from human saliva with inhibitor affinity chromatography followed by ion-exchange chromatography. The molecular weight was determined to be 42,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that the human salivary enzyme is larger than the cytosolic isoenzymes CA I, CA II, and CA III (Mr 29,000) from human tissue sources. Each molecule of the salivary enzyme had two N-linked oligosaccharide chains which were cleaved by endo-beta-N-acetylglucosaminidase F but not by endo-beta-N-acetylglucosaminidase H, indicating that the oligosaccharides are complex type. The isoelectric point was determined to be 6.4, but significant charge heterogeneity was found in different preparations. The human salivary isozyme has lower specific activity than the rat salivary isozyme and the human red blood cell isozyme II in the CO2 hydratase reaction. The inhibitory properties of the salivary isozyme resemble those of CA II with iodide, sulfanilamide, and bromopyruvic acid, but the salivary enzyme is less sensitive to acetazolamide and methazolamide than CA II. Antiserum raised in a rabbit against the salivary enzyme cross-reacted with CA II from human erythrocytes, indicating that human salivary carbonic anhydrase and CA II must share at least one antigenic site. CA I and CA III did not crossreact with this antiserum. The amount of salivary carbonic anhydrase in the saliva of the CA II-deficient patients was greatly reduced, indicating that the CA II deficiency mutation directly or indirectly affects the expression of the salivary carbonic anhydrase isozyme. From these results we conclude that the salivary carbonic anhydrase is immunologically and genetically related to CA II, but that it is a novel and distinct isozyme which we tentatively designate CA VI.  相似文献   

7.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

8.
Complete amino acid sequence of ovine salivary carbonic anhydrase   总被引:2,自引:0,他引:2  
The primary structure of the secreted carbonic anhydrase from ovine salivary glands has been determined by automated Edman sequence analysis of peptides generated by cyanogen bromide and tryptic cleavage of the protein and Staphylococcus aureus V8 protease, trypsin, and alpha-chymotrypsin subdigests of the large cyanogen bromide peptides. The enzyme is a single polypeptide chain comprising 307 amino acids and contains two apparent sites of carbohydrate attachment at Asn-50 and Asn-239. The protein contains two half-cystine residues at 25 and 207 which appear to form an intramolecular disulfide bond. Salivary carbonic anhydrase shows 33% sequence identity with the ovine cytoplasmic carbonic anhydrase II enzyme, with residues involved in the active site highly conserved. Compared to the cytoplasmic carbonic anhydrases, the secreted enzyme has a carboxyl-terminal extension of 45 amino acids. This is the first report of the complete amino acid sequence of a secreted carbonic anhydrase (CA VI).  相似文献   

9.
Measurements of oxygen equilibrium, zeta-potential, resistance to flow, carbonic anhydrase activity, and catalase activity were made on sheep erythrocyte hemolysate-loaded poly(phthaloyl L-lysine) microcapsules (artificial red blood cells) prepared by an interfacial polycondensation technique. The measurements revealed that oxygen dissociation equilibrium, zeta-potential, and carbonic anhydrase activity of the microcapsules are almost the same as those of sheep erythrocytes, while the microcapsules have a higher resistance to flow and a lower catalase activity than the erythrocytes. Possible ways of improving the properties of the microcapsules were suggested.  相似文献   

10.
Affinity chromatography of carbonic anhydrase   总被引:1,自引:0,他引:1  
An insoluble support for affinity chromatography of carbonic anhydrase has been prepared by coupling Sulfamylon (p-aminomethylbenzene sulfonamide) to Sepharose 4B. Carbonic anhydrase binds to Sulfamylon-Sepharose very strongly and can be eluted under mild conditions by the addition of enzyme inhibitors. The gel was used to purify carbonic anhydrase from human erythrocytes and to separate isozymes B and C. It was also employed to separate native enzyme from modified carbonic anhydrases. The apoenzyme and the carboxymethyl enzyme of human carbonic anhydrase B were both isolated by this method.  相似文献   

11.
In this study, bovine articular and human chondrocytes from the C-20/A4 cell line were tested for the functional activity and molecular presence of the enzyme carbonic anhydrase. This enzyme is classically considered to be important in the maintenance of high cellular buffering capacity by catalysing the slow attainment of equilibrium between CO(2) and HCO(3)(-). The first functional assay measured the rate of pH equilibration after administration of a fixed dose of CO(2) solution to cell lysates. Compared to positive controls (human erythrocytes, murine M1 cells and purified carbonic anhydrase), chondrocyte lysates attained equilibrium at a significantly slower rate, similar to the rate obtained with a negative control (Xenopus oocytes). A second functional assay studied CO(2) hydration kinetics in intact C-20/A4 cells, using a pH-sensitive fluorescent dye, as the CO(2) content of the extracellular solution was changed. It was shown that C-20/A4 cells accelerate hydration only to a small degree. Hydration kinetics were reduced to the spontaneous rate in the presence of acetazolamide. Western immunoblotting with isoform-nonspecific antibodies to carbonic anhydrase demonstrated weak staining in both bovine and human chondrocytes.  相似文献   

12.
Madin Darby canine kidney (MDCK) renal epithelial cell cultures have been investigated with respect to their potency to express carbonic anhydrase activity using histochemical methods. Acetazolamide inhibitable carbonic anhydrase activity could be detected in the cytoplasmic compartment as well as in the apical membrane of cells when grown on solid culture supports. Cells forming domes in MDCK monolayers exhibit the highest histochemically detectable enzyme activity. The attempt to subculture clonal cell lines from MDCK monolayer cultures resulted in the establishment of 5 clones, slightly different with respect to size and shape of cells and their potency to form domes. Scanning electron microscopy ensured the identification of one clone (1A4), which distinctly differed from the others with respect to the apical membrane architecture. Co-localization of peanut agglutinin and carbonic anhydrase activity at the plasma membrane always revealed a combined occurrence of enzyme reactivity and lectin binding in the apical membrane domain. Both, lectin binding and carbonic anhydrase activity were distinctly more intense in plasma membrane regions equipped with microvilli. From the results it is concluded that MDCK cells in tissue culture retained properties of intercalated cells of the nephron collecting duct segment.  相似文献   

13.
M Bouthier  J M Gulian  B Mallet  R Calaf  J Reynaud 《Biochimie》1979,61(10):1161-1168
Limiting viscosity numbers of bovine and ovine erythrocytes carbonic anhydrase variants were calculated by the objective method of comparing viscosimetric data obtained from low-activity-human erythrocyte carbonic anhydrase and its natural variant. Shifts of mobilities and isoelectric points are shown for all species variants, but variations of limiting viscosity numbers were only detected for human and bovine variants. Results of the study are consistent with the observation that variants arise by deamidation of erythrocyte carbonic anhydrases, and that deamidation is responsible for changes in structure and hydration (i. e. "conformational" modifications). Thus, all the variants so far investigated are stable conformational variants or erythrocyte carbonic anhydrases.  相似文献   

14.
Band 3, the erythrocyte anion transporter, has been shown to transfer between human erythrocytes and sonicated vesicles (Newton, A. C., Cook, S. L., and Huestis, W. H. (1983) Biochemistry 22, 6110-6117). Functional band 3 becomes associated with dimyristoylphosphatidylcholine vesicles incubated with human red blood cells. Proteolytic degradation patterns reveal that the transporter is transferred to the vesicles in native orientation. In erythrocytes, native band 3 is degraded on the exoplasmic membrane face by chymotrypsin and on the cytoplasmic surface by trypsin (Cabantchik, Z. I., and Rothstein, A. (1974) J. Membr. Biol. 15, 227-248; Jennings, M. L., Anderson, M. P., and Monaghan, R. (1986) J. Biol. Chem. 261, 9002-9010). Band 3 in intact protein-vesicle complexes is degraded by exogenous chymotrypsin but not by trypsin. In contrast, trypsin entrapped in the lumen of the vesicles proteolyses the vesicle-bound band 3 quantitatively. Band 3 remaining in the membranes of vesicle-treated cells and in cell fragments is not degraded detectably by vesicle-entrapped trypsin. These observations indicate that band 3 is unlikely to transfer between cell and vesicle membranes via a water-soluble form or to adhere nonspecifically to the vesicle surface; the aqueous contents of vesicles and cells (or membrane fragments) are not pooled during cell-vesicle incubations, hence no cell-vesicle fusion occurs; and the band 3 associated with the sonicated vesicle fraction is inserted in the vesicle bilayer in native orientation, with its cytoplasmic segment contacting the aqueous contents of the vesicle lumen.  相似文献   

15.
Sarcolemmal carbonic anhydrase in red and white rabbit skeletal muscle   总被引:2,自引:0,他引:2  
Sarcolemmal vesicles of white and red skeletal muscles of the rabbit were prepared by consecutive density gradient centrifugations in sucrose and dextran according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13,862-13,871). White and red muscle membrane fractions enriched in sarcolemma were characterized by high ouabain-sensitive Na+, K(+)-ATPase, by high Mg2(+)-ATPase activity, and by a high cholesterol content. Ca2(+)-ATPase activity, a marker enzyme for sarcoplasmic reticulum, was not detectable in the highly purified white and red muscle sarcolemmal fractions. White and red muscle sarcolemmal fractions exhibited no significant differences with regard to Na+, K(+)-ATPase, Mg2(+)-ATPase, and cholesterol. Specific activity of carbonic anhydrase in white muscle sarcolemmal fractions was 38 U.ml/mg and was 17.6 U.ml/mg in red muscle sarcolemma. Inhibition properties of sarcolemmal carbonic anhydrase were analyzed for acetazolamide, chlorzolamide, and cyanate. White muscle sarcolemmal carbonic anhydrase is characterized by inhibition constants, KI, toward acetazolamide of 4.6 X 10(-8) M, toward chlorzolamide of 0.75 X 10(-8) M, and toward cyanate of 1.3 X 10(-4) M. Red muscle sarcolemmal carbonic anhydrase is characterized by KI values toward acetazolamide of 8.1 X 10(-8) M, toward chlorzolamide of 6.3 X 10(-8) M, and toward cyanate of 0.81 X 10(-4) M. In contrast to the high specific carbonic anhydrase activities in sarcolemma, carbonic anhydrase activity in sarcoplasmic reticulum from white muscle varied between values of only 0.7 and 3.3 U.ml/mg. Carbonic anhydrase of red muscle sarcoplasmic reticulum ranged from 2.4 to 3.7 U.ml/mg.  相似文献   

16.
Summary The fine structural localization of histochemically demonstrable carbonic anhydrase (CA) has been studied in tissues of the rat with particular regard to the red blood cell and associated reactions. A variety of fixation methods, including immersion in warm solution for periods up to one week, were used. All methods showed a precipitate along the red cell plasma membrane, with less reaction inside the cell. Secondly, the pinocytotic vesicles of capillary endothelium, pericytes, and smooth muscle cells accumulated precipitate; this staining was independent of neighboring red cell activity. A third finding was filling of the extracellular space, accessible pinocytotic vesicles, and mesaxons of small nerves by dense material. None of these staining patterns appear to be mediated by enzyme activity; the first may represent CA localization via direct staining, but the others are probably artifacts typical of many systems which employ a simple heavy metal salt.  相似文献   

17.
Carbonic anhydrase C in white-skeletal-muscle tissue.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.  相似文献   

18.
The subcellular distribution and kinetic properties of carbonic anhydrase were examined in red blood cells and gills of the lamprey, Petromyzon marinus, a primitive agnathan, and rainbow trout, Oncorhynchus mykiss, a modern teleost, in relation to the evolution of rapid Cl/HCO 3 exchange in the membrane of red blood cells. In the lamprey, which either lacks or has minimal red cell Cl/HCO 3 exchange, there has been no compensatory incorporation of carbonic anhydrase into the membrane fraction of either the red cell or the gill. Carbonic anhydrase activity in red cells is exclusively cytoplasmic, and the single isozyme displays kinetic properties typical of the type I, slow turnover, isozyme. In the red blood cells of the trout, however, which possess high amounts of the band-3 Cl/HCO 3 exchange protein, the single carbonic anhydrase isozyme appears to be kinetically similar to the type II, fast turnover, isozyme. It thus appears that the type I isozyme present in the red blood cells of primitive aquatic vertebrates was replaced in modern teleosts by the kinetically more efficient type II isozyme only after the incorporation and expression of a significant amount of the band-3 exchange protein in the membrane of the red cell.Abbreviations BCIP 5-bromo-4-chloro-3-indolyl phosphate - CA carbonic anhydrase - DTT dithiothreitol - EDTA ethylenediaminetetra-acetate - E 0 total concentration of free enzyme - i fractional inhibition of enzyme activity - IU international units - K 1 inhibition constant - K M Michaelis constant - NBT nitro blue tetrazolium - NCP nitrocellulose paper - RBC red blood cell - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - V max maximal velocity of reaction  相似文献   

19.
The binding of bovine oxyhemoglobin to bovine carbonic anhydrase with a dissociation constant between 10(-5) and 10(-7) M has been determined by countercurrent distribution using aqueous, biphasic polymer systems. This result provides an explanation for the very efficient proton transfer between hemoglobin and carbonic anhydrase, a transfer which enhances the catalytic activity of carbonic anhydrase as measured by 18O exchange between bicarbonate and water at chemical equilibrium (Silverman, D. N., Tu, C. K., and Wynns, G. C. (1978) J. Biol. Chem, 253, 2563-2567). Two rate constants describing 18O exchange activity of carbonic anhydrase at pH 7.5 show saturation behavior when plotted against hemoglobin concentration consistent with a dissociation constant of 2.5 X 10(-6) M between bovine hemoglobin and carbonic anhydrase. Interpretation of these rate constants in terms of a two-step model for 18O exchange indicates that hemoglobin enhances the rate of exchange from carbonic anhydrase of water containing the oxygen abstracted from bicarbonate, but does not affect the catalytic interconversion of CO2 and HCO3- at chemical equilibrium.  相似文献   

20.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号