首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acholeplasma laidlawii B was grown on the branched-chain fatty acids, 14-methylpentadecanoic acid and 14-methylhexadecanoic acid, and the straight-chain palmitic acid. The incorporation of the branched-chain fatty acids was very effective; more than 90% of the fatty acids of the lipids of this organism consisted of the branched-chain constituents. A somewhat smaller amount (81%) was found in the cells grown with palmitic acid. Differential scanning calorimetry of the isolated membranes showed that distinct lipid phase transitions occurred in between 15 and 31 °C for the 14-methylpentadecanoic acid, 11 and 29 °C for the 14-methylhexadecanoic acid, and 14 and 36 °C for the palmitic acid-enriched membranes. Freeze-fracture electron microscopy showed that the lipid phase transitions were accompanied by particle aggregation only in the case of palmitic acid-enriched membranes. When the branched-chain acid-enriched membranes were quenched from temperatures below the onset of the lipid phase transition, a random distribution of particles on both fracture faces of the membrane was observed. The membranes were incubated with pig pancreatic phospholipase A2 at various temperatures. Below the onset of the lipid phase transition phosphatidylglycerol was not accessible for this enzyme in palmitate-enriched membranes. However, a fast hydrolysis of 60–75% of the phosphatidylglycerol could be measured in the branched-chain acid-enriched membranes at temperatures below the onset of the lipid phase transition. The residual phosphatidylglycerol could be hydrolyzed at a slower, temperature-dependent rate. The observations show that lipids containing branched-chain acids undergo a cooperative lipid phase transition which does not result in a tight packing of the lipids of the bilayer below the phase transition.  相似文献   

2.
Myristic acid specifically deuterated at several positions along the acyl chain was biosynthetically incorporated into the membrane lipids of Acholeplasma laidlawii B to the level of ?90%. 2H-NMR was used to study the molecular order and lipid phase composition of the membranes as a function of temperature. Isolated membranes and intact cells give rise to similar 2H spectra. Below 25°C the spectra exhibit a broad gel phase component which at 0°C reaches the rigid limit value expected for an immobilized methylene group. Spectral moments were used to determine the relative amounts of gel and liquid crystalline phase lipids throughout the gel-liquid crystal phase transition. The results indicate that at the growth temperature (37 or 30°C) the A. laidlawii B membrane lipids are ~85–90% in the gel state, and that protein has little effect on lipid order of the liquid crystalline lipid, but leads to an increase in the linewidth by approx. 20%.  相似文献   

3.
The lipid phase transition of Escherichia coli was studied by high sensitivity differential scanning calorimetry. A temperature sensitive unsaturated fatty acid auxotroph was used to obtain lipids with subnormal unsaturated fatty acid contents. From these studies it was concluded that E. coli can grow normally with as much as 20% of its membrane lipids in the ordered state but that if more than 55% of the lipids are ordered, growth ceases. Studies with wild-type cells show that the phase transition ends more than 10°C below the growth temperature when the growth temperature when the growth temperature is either 25°C or 37°C.  相似文献   

4.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

5.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

6.
The phase behavior of aqueous dispersions of extracted lipids from Clostridium thermocellum wild-type and ethanol-tolerant C919 cells has been examined by DSC. The optimum growth temperature of this anaerobe is 60°C. The wild-type lipids exhibit a broad phase transition centered at 30°C; the C919 mutant lipids show a 10°C lower Tm. The direct addition of growth inhibiting concentrations of ethanol has no significant effect on Tm or headgroup mobility (monitored by 2H-NMR) of either set of lipids. In contrast, wild-type cells adapted to growth in ethanol exhibit a broadened and lower Tm (15–25°C plateau); C919 membrane lipids do not exhibit significantly altered phase behavior when adapted to growth in ethanol. Both wild-type and mutant membranes have fatty acid composition changes upon growth in ethanol, which increases lower-melting components. It is concluded that fatty acid changes which occur upon adaptation of the organism to growth in ethanol are secondary responses and not necessarily direct responses to alter membrane fluidity.  相似文献   

7.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

8.
Murata N  Yamaya J 《Plant physiology》1984,74(4):1016-1024
Seven major lipid classes were isolated from leaves of chilling-sensitive and chilling-resistant plants, and the temperature-dependent phase behaviors of their aqueous dispersions were studied by a fluorescence polarization method using trans-parinaric acid and its methyl ester. Phosphatidylglycerols from the chilling-sensitive plants went from the liquid crystalline state into the phase separation state at about 30°C in 100 mm NaCl and at about 40°C in 5 mm MgCl2. In contrast, phosphatidylglycerols from the chilling-resistant plants went into the phase separation state at a much lower temperature. The other classes of lipids remained in the liquid crystalline state at all temperatures between 5°C and 40°C regardless of the chilling sensitivity of the plants, except sulfoquinovosyl diacylglycerol from sponge cucumber in which phase separation seemed to begin at about 15°C. Compositions and positional distributions of fatty acids of the lipids suggest that the phosphatidylglycerols from the chilling-sensitive plants, but no other lipids, contained large proportions of molecular species which undergo phase transition at room temperature or above. The thermotropic phase behaviors and the fatty acid compositions suggest that, among the major lipid classes from leaves of the chilling-sensitive plants, only phosphatidylglycerol can induce a phase transition. Since a major part of this lipid in leaves originates from the chloroplasts, phase transition probably occurs in the chloroplast membranes.  相似文献   

9.
Mitochondrial, microsomal and pellicular membranes were isolated from Tetrahymena cells grown at 39°C or 15°C, and phospholipids, in turn, were separated from total lipids extracted from these membranes. The effect of growth temperature on their solid-to-fluid phase transition temperature was examined by wide-angle X-ray diffraction. The transition temperatures of phospholipids from mitochondria, microsomes and pellicles were 21, 19 and 26°C for cells grown at 39°C and ?8, ?3 and 6°C for cells grown at 15°C, respectively. All phospholipids were found in a completely fluid state at these growth temperatures. From a comparison between the phospholipids and total lipids from pellicles of cells grown at 39°C, a triterpenoid alcohol, tetrahymanol, caused the transition temperature to increase. The alignment of tetrahymanol in membranes was examined with pellicle's total lipid oriented in a sample holder.  相似文献   

10.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

11.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithinphosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers.In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8·10?8 cm2/s at 59°C.Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol% lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy.Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5° to Tt = 62°C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

12.
The fatty acid distribution pattern of lipids extracted from different subcellular components of Tetrahymena pyriformis was found to be significantly different from one type of membrane to another.The growth-temperature shift caused alterations in fatty acid composition. The ratio of palmitoleic to palmitic acid, especially, showed a sharp linear decline with increase of temperature in all of the membrane fractions.The spin labels were rapidly incorporated into Tetrahymena membranes. The order parameter of 5-nitroxide stearate spin label incorporated into various membrane fractions was found to be different for the different membrane fractions, suggesting the following order of the fluidity; microsomes > pellicles > cilia.The fluidity of the surface membranes, cilia and pellicles isolated from Tetrahymena cells grown at 15°C was noticeably higher than that of the membranes from cells grown at 34°C but was not so different with microsomal fractions.The motion of the spin label in the pellicular membrane was more restricted than in its extracted lipids, thus indicating the assumption that in Tetrahymena membranes the proteins influence the fluidity.It was also suggested that a sterol-like triterpenoid compound, tetrahymanol, which is principally localized in the surface membranes, would be involved in the membrane fluidity.  相似文献   

13.
The phase behaviour of smooth microsomal membranes from senescing cultures of Scenedesmus quadricauda has been examined by wide-angle x-ray diffraction. The algae were grown in Bristol's medium at 22°C under continuous illumination. The transition temperature, taken to be the highest temperature at which crystalline (gel) phase lipid can be detected, increased with culture age from a low of 0°C for young cultures to a high of about 70°C for 140-day-old cultures. This indicates that for young cultures the membrane lipid is entirely liquid-crystalline (fluid) at physiological temperatures, but as the cultures age portions of the lipid become crystalline. The increase in transition temperature showed a close temporal correlation with loss of chlorophyll and loss of protein per g dry weight, and can thus be construed as an index of senescence. The unsaturated to saturated fatty acid ratio of the membrane lipid, while fluctuating with culture age, did not show any consistent trend that could be related to the change in transition temperature. Thus the formation of gel phase lipid does not appear to be due to a change in fatty acid saturation.  相似文献   

14.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

15.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43°C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20°C, but in a liquid crystalline state when cells were grown at 37 and 43°C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

16.
The phospholipid and fatty acid composition and thermotropic behavior of total lipids were studied in the metal-accumulating marine strain Pseudomonas putida IB28 grown in the presence of Cu2+ and Cd2+ at 4 and 24°C. Despite the changes in acidic lipid content, unsaturated/saturated fatty acid ratio, and cyclopropane fatty acid level, the temperature range of calorimetric phase transitions of bacterial total lipids was slightly altered under these factors. The suppressive action of heavy metals on bacterial growth is attributable to the phase separation of lipids and, as a consequence, to a sharp increase in the ion permeability of the lipid bilayer. The increase in acidic phospholipid level under the influence of Cu2+ and Cd2+, especially at 24°C, is likely to be indicative of their complexation with heavy metal ions.  相似文献   

17.
Incubations of rat liver inner mitochondrial membranes with liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol resulted in a considerable enrichment of the cholesterol composition of these membranes. This enrichment is not accompanied by an alteration in the membrane phospholipid content or fatty acid composition. The exogenous cholesterol appears to be integrated into the membrane structure because it has effects consistent with the known properties of this sterol in other natural and artificial membrane systems.Differential scanning calorimetry on both intact membranes and extracted lipids showed that as the ratio of cholesterol to phospholipid was increased, the endotherm corresponding to the lipid phase transition was reduced. Freeze-fracture electron microscopy of the native membranes showed that intramembranous particles are randomly distributed above the phase transition temperature. Below this temperature large smooth areas, believed to correspond to lipid in the gel state from which proteins have been excluded, can be observed. In the presence of high concentrations of cholesterol the fracture faces observed below the lipid transition temperature show no regions of phase segregation, an observation consistent with previous studies using pure lipids where cholesterol was observed to prevent the lipid undergoing a cooperative phase transition.The results are discussed in terms of the observed low concentrations of cholesteorl in normal liver inner mitochondrial membranes and the distribution of cholesterol within the liver cells.  相似文献   

18.
Brief treatment of rat liver plasma membranes with phospholipase C of Clostridium welchii increased both the ratio of saturated to unsaturated fatty acids and the ratio of cholesterol to phospholipids. Using 5-doxylstearic acid spin probes two breaks at 29 and 19.6 °C could be observed in the order parameter, SA, vs temperature curve for untreated membranes. Upon phospholipase C digestion the lower phase transition temperature was shifted to 23 °C, while the higher phase transition temperature could not be detected up to 40 °C. The order parameter, SA, was consistently higher at all temperatures in the phospholipase C-treated membranes. As phospholipase C is known to attack the outer lamella, these results can be interpreted as indicating an increase in ordering (i.e., decrease in fluidity) of the outer membrane lamella. On the other hand, an increase in basal activity of adenylate cyclase of the treated membranes was observed with an apparent reduction of the activation energies both below and above the break (at 20 °C) in the Arrhenius plot of enzyme activity. Phospholipase C treatment did not affect the temperature of the break in Arrhenius kinetics of the enzyme. The results are discussed in terms of the role of the ordering state of membrane lipids in adenylate cyclase activity.  相似文献   

19.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

20.
The lipids in cell membranes of Acholeplasma laidlawii were enriched with different fatty acids selected to produce membranes showing molecular motion discontinuities at temperatures between 10 and 35 °C. Molecular motion in these membranes was probed by ESR after labelling with 12-nitroxide stearate, and structure in these membranes was examined by electron microscopy after freeze-etching.Freeze-etching and electron microscopy showed that under certain conditions the particles in the A. laidlawii membranes aggregated, resulting in particle-rich and particle-depleted regions in the cell membrane. Depending upon the lipid content of the membrane, this aggregation could begin at temperatures well above the ESR-determined discontinuity. Aggregation increased with decreasing temperature but was completed at or near the discontinuity. However, cell membranes grown and maintained well below their ESR-determined discontinuity did not show maximum particle aggregation until after they had been exposed to temperatures at or above the discontinuity.The results show that temperatures at or near a phase transition temperature can induce aggregation of the membrane particles. This suggests that temperature-induced changes in the lipid phase of a biological membrane can induce phase separations which affect the topography of associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号