首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cleavable cross-linking reagent, dithiobis(succinimidyl propionate), DSP, was used to study the topography of the proteins in the endoplasmic reticulum membrane of rat liver. Reaction of untreated (control), phenobarbital- or 3-methylcholanthrene-induced microsomes with 0.5 mM DSP for 30 min at 0°C resulted in the cross-linking of a protein with a molecular weight of about 52 000 to form an apparent dimer. In phenobarbital microsomes, a smaller amount of a 52 000-dalton protein also appeared in a dimer in the absence of DSP if N-ethylmaleimide was not included during homogenization. In phenobarbital and 3-methylcholanthrene microsomes, a 48 000-dalton protein was cross-linked by DSP to a protein of about 57 000. In all three types of microsomes, a protein with an MI of about 52 000 was also cross-linked to a protein of about 79 000. In phenobarbital and control microsomes, cross-linking resulted in an oligomeric protein of approximate molecular weight 180 000 which contained three proteins, two with Mr of about 52 000 and one about 79 000. Under the cross-linking conditions, little or no denaturation of cytochrome P-450 and NADPH-cytochrome c reductase was observed. The aryl hydrocarbon hydroxylase activity was significantly inhibited by the bifunctional cross-linking reagent, DSP, but not by the monofunctional reagent N-succinimidyl-3-(4-hydroxyphenyl) propionate. However, attempts to regenerate the aryl hydrocarbon hydroxylase activity by cleavage of the disulfide linkage with 2-mercapto-ethanol or dithiothreitol were not successful.  相似文献   

2.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

3.
Induction by hexachlorobenzene (HCB) of the liver microsomal system of metabolism of xenobiotics has been studied in comparison with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that HCB increases the content of cytochrome P-450 in the microsomes. Like PB, HCB induces the activities of aminopyrine- and benzphetamine-N-demethylases. At the same time HCB increases also the activities of benzpyrenehydroxylase and 7-ethoxyresorufin-O-deethylase, which are characteristic of the MC-induction. However, sodium dodecyl sulphate (SDS)-electrophoresis on polyacrylamide gel has revealed that HCB, similar to PB, induces protein with Mr = 52 000 (cytochrome P-450), but not the protein with Mr = 56 000, which is the main isoenzyme of cytochrome P-450 in MC-microsomes (P-448). Using specific antibodies to isolated cytochromes P-450 and P-448 (anti-P-450 and anti-P-448) it has been found by rocket immunoelectrophoresis that in HCB-treated microsomes 20% of the total cytochrome P-450 consist of PB-form and about 10% comprise cytochrome P-488. It has also been found that anti-P-448 totally inhibit 7-ethoxyresorufin-O-deethylase activity of HCB-microsomes while anti-P-450 was inactive. The data presented give direct proof that HCB exemplifies an individual chemical compound which is able to initiate the synthesis of both PB-form and MC-form of the cytochrome P-450.  相似文献   

4.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with β-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with β-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56 000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55 000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identify with cod cytochrome P-450b (Mr 54 000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

5.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

6.
The ability of phenobarbital and 3-methylcholanthrene (3MC) to induce liver microsomal and soluble enzymes was compared in Sprague-Dawley and Long-Evans rats. 3MC increased the V for the aniline hydroxylase and stimulated the formation of the hemoprotein P448 to a similar extent in the 2 strains of rats. On the other hand phenobarbital increased the V for the microsomal enzyme aniline hydroxylase and aminopyrine demethylase and enhanced the activity of the soluble enzyme aldehyde dehydrogenase only in Sprague-Dawley rats. It induced a more marked increase of cytochrome P450 in the Sprague-Dawley than in the Long-Evans strain.  相似文献   

7.
Cytochrome P-450, NADPH-cytochrome c reductase, biphenyl hydroxylase, and epoxide hydratase have been compared in intact rat liver and in primary hepatocyte cultures. After 10 days in culture, microsomal NADPH-cytochrome c reductase and epoxide hydratase activities declined to a third of the liver value, while cytochrome P-450 decreased to less than a tenth. Differences in the products of benzo[a]pyrene metabolism and gel electrophoresis of the microsomes indicated a change in the dominant form(s) of cytochrome P-450 in the cultured hepatocytes. Exposure of the cultured cells to phenobarbital for 5 days resulted in a threefold induction in NADPH-cytochrome c reductase and epoxide hydratase activities which was typical of liver induction of these enzymes. Exposure of the cells to 3-methylcholanthrene did not affect these activities. Cytochrome P-450 was induced over two times by phenobarbital and three to four times by 3-methylcholanthrene. The λmax of the reduced carbon monoxide complex (450.7 nm) and analysis of microsomes by gel electrophoresis showed that the phenobarbital-induced cytochrome P-450 was different from the species induced by 3-methylcholanthrene (reduced carbon monoxide λmax = 447.9 nm). However, metabolism of benzo[a]pyrene (specific activity and product distribution) was similar in microsomes of control and phenobarbital- and 3-methylcholan-threne-induced hepatocytes and the specific activity per nmole of cytochrome P-450 was higher than in liver microsomes. The activities for 2- and 4-hydroxylation of biphenyl were undetectable in all hepatocyte microsomes even though both activities were induced by 3-methylcholanthrene in the liver. Substrate-induced difference spectra and gel electrophoresis indicated an absence in phenobarbital-induced hepatocytes of most forms of cytochrome P-450 which were present in phenobarbital-induced rat liver microsomes. It is concluded that the control of cytochrome P-450 synthesis in these hepatocytes is considerably different from that found in whole liver, while other microsomal enzymes may be near to normal. Hormonal deficiencies in the culture medium and differential hormonal control of the various microsomal enzymes provide a likely explanation of these effects.  相似文献   

8.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

9.
The biosynthesis of a cytochrome P450 peptide sub-unit by the in vitro translation of total hepatic poly (A)+ mRNA in an heterologous cell-free-system is described. The ability of the liver poly (A)+ RNA preparations from normal and phenobarbital induced rats to promote protein synthesis and the identification of in vitro synthesized proteins revealed the presence of a cytochrome P450 peptide sub-unit presenting the same apparent molecular weight of the native peptide. This fact demonstrates that rat liver poly (A)+ mRNA fraction contains an important amount of cytochrome P450 peptide messages. Total poly (A)+ RNA from rats in an early phenobarbital induction stage exhibits a higher cytochrome P450 template activity in good agreement with the enhancement of this hemeprotein concomitantly observed in vivo, in the liver microsomes, it is also concluded that cytochrome P450, peptide sub-unit, induced in rat liver by phenobarbital, is translated in its mature form.  相似文献   

10.
Some pharmacological properties of ellipticine (E) and its derivatives linked to their interaction with cytochrome P-450 have been investigated with human liver microsomes. 9-Hydroxyellipticine (9-OHE) interacts with human liver cytochrome P-450 exhibiting a type II spectrum (λmax: 428 nm, Ks = 1.1 μM). After incubation with human liver microsomes the E was converted to 9-OHE; 7-hydroxyellipticine was not produced. The cytotoxic effect of this biotransformation has been evaluated on leukemic L1210 cells, in vitro, and found to be equal to those elicited by liver microsomes of control or phenobarbital (PB) pretreated rats. Moreover, 9-OHE and 9-fluoroellipticine (9-FE) strongly inhibit the benzo[a]pyrene hydroxylase (AHH) activity of human liver microsomes (I50 = 2.6 μM and 1.6 μM, respectively) as well as the mutagenesis induced by the polycyclic aromatic hydrocarbon 2-acetylaminofluorene (AAF); 1 μg/plate of each of these compounds is able to inhibit by more than 50% the mutagenicity of 5 μg/plate AAF.  相似文献   

11.
Human liver cytochrome P-450 was isolated from autopsy samples using cholate extraction and chromatography on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE-cellulose gels. Purified preparations contained as much as 14 nmol cytochrome P-450 mg?1 protein, were free of other hemoproteins, and were active in the mixed-function oxidation of d-benzphetamine and 7-ethoxycoumarin when coupled with either rat or human liver NADPH-cytochrome P-450 reductase. Some of the preparations were apparently homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; apparent subunit Mrs estimated for several preparations were 53,000 or 55,500. The amino acid composition of one preparation was determined and found to resemble those of rat liver cytochromes P-450, although some variations were noted. Rabbit antibodies raised to phenobarbital-treated rat liver cytochrome P-450 were more effective in inhibiting d-benzphetamine N-demethylase activity in human liver microsomes than were antibodies raised to 3-methylcholanthrene-treated rat liver cytochrome P-450. These antibodies also inhibited benzo(a)pyrene hydroxylation in human liver microsomes, although the inhibition patterns did not follow a general pattern as in the case of benzphetamine demethylase activity. Microsomes prepared from three different human liver samples were more effective in eliciting complement fixation with antibodies raised to phenobarbitalthan to 3-methylcholanthrene-treated rat liver cytochrome P-450. Complement fixation in such systems appears to result from similarity of certain rat and human liver cytochrome P-450 antigenic determinants, as fixation could be inhibited by removal of cytochrome P-450-directed antibodies from the total immunoglobulin population and purified human cytochrome P-450 was more effective (on a protein basis) than liver microsomes in producing fixation. Human liver microsomes prepared from five different individuals all produced ≥ 90% complement fixation, but variations were observed in the fixation curves plotted either versus microsomal protein or versus spectrally detectable microsomal cytochrome P-450.These results indicate that human liver microsomal cytochromes P-450 can be isolated using modifications of techniques developed for laboratory animals and that human and rat liver cytochromes P-450 share certain features of structural, functional, and immunological similarity. The available data suggest the existence of multiple forms of human liver microsomal cytochrome P-450, but possible artifacts associated with the use of autopsy samples suggest caution in advancing such a conclusion.  相似文献   

12.
The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzo[a]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.  相似文献   

13.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

14.
Benzo(a)pyrene [B(a)P] treatment of gilthead seabream, 25 mg/kg, i.p. for 5 consecutive days, did not cause any significant changes in ethylmorphine N-demethylase and aniline 4-hydroxylase activities of liver microsomes. The same treatment did not alter the liver microsomal cytochrome b5 content, NADH-cytochrome b5 reductase and NADPH-cytochrome P450 reductase activities. However, benzo(a)pyrene treatment caused a 2–3-fold increase in 7-ethoxyresorufin O-deethylase (7-EROD) activity of gilthead seabream liver microsomes. Although, upon treatment, total cytochrome P450 content of liver microsomes increased about 1.7-fold in 1990 fall, no such increase was observed in spring 1991. However, a new cytochrome P450 with an apparent Mr of 58,000 was observed on SDS-PAGE of liver microsomes obtained from benzo(a)pyrene treated gilthead seabream. Besides, in vitro addition of 0.2 × 10−6 M benzo(a)pyrene to the incubation mixture inhibited 7-ethoxyresorufin O-deethylase activity by 93%. Gilthead seabream liver microsomal 7-ethoxyresorufin O-deethylase activity was characterized with respect to substrate concentration, amount of enzyme, type of buffer used, incubation period and temperature.  相似文献   

15.
The effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the aryl hydrocarbon hydroxylase (AHH) activities in the liver, lung and skin of rats and mice have been studied to examine the possible mechanisms of the anticarcinogenic actions of these compounds. Both compounds inhibit the hydroxylase activities of hepatic microsomes and nuclei, with BHA a more potent inhibitor than BHT. The AHH of lung microsomes is inhibited to a lesser extent by BHA and BHT than that of the liver. The AHH activities of both liver and lung microsomes become less susceptible to the inhibition after pretreatment of the animals with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) but phenobarbital (PB) pretreatment does not produce such an effect. In skin homogenates, however, the AHH activities of control rats and mice are not inhibited by BHA and BHT. The only skin sample which is inhibited by BHA and BHT is that from TCDD-pretreated mice. It has been established that the extent of inhibition with different samples is related to the concentration of BHA in the incubation but not to the amounts or specific activities of microsomes used. Double reciprocal plots suggest that BHA exerts a mixed inhibition on the hydroxylase of liver microsomes with a Ki of 7.7 μM. Analysis of the metabolites of benzo[a]pyrene (BP) shows that BHA inhibits the formation of various metabolites uniformly without changing the regio-selectivity of the enzyme system. The mechanism of inhibition has also been studied with a reconstituted AHH system consisting of cytochrome P-450 (P-450), reductase and phospholipid. The system with P-450 isolated from PB-induced microsomes is inhibited to a much greater extent than that with MC-induced P-450. The results indicate that the inhibitory action of BHA is dependent on the species of the animal, tissue types and treatment with inducers.  相似文献   

16.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At > 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70X), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58X) and P-450d (8X), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ahresponsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10?6 to 10?5 M).  相似文献   

17.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120 000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843–850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38 000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

18.
As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is locted Important variables that were studied included adding NADH, adding, induction of enzymed by intake of phenobarbital and the effects of oxygen. Reduction of nonparamagnetic derivatives and oxidation to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADh or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylmines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

19.
In order to investigate age and sex as determinants of hepatic cytochromes P-450, the polypeptide compositions of liver smooth microsomes from Fischer-344 rats were examined using two-dimensional gel electrophoresis (G. P. Vlasuk and F. G. Walz, Jr. (1980)Anal. Biochem. 105, 112). The effects of phenobarbital and 3-methylcholanthrene treatments were investigated using sexually immature (1 month), young adult (3 months), middle aged (12 months), and senescent (26 months) animals of both sexes. The appearance of five major microsomal polypeptides characterized sexual maturation in males. The only qualitative difference in the patterns of xenobiotic-induced polypeptides were found for young adult and middle-aged males where cytochrome P-450a (D. Ryan, P. E. Thomas, D. Korzeniowski, and W. Levin (1979)J. Biol. Chem. 254, 1365) was not induced by phenobarbital. A number of major microsomal polypeptides which might represent unidentified forms of cytochrome P-450 in untreated males and females were markedly decreased in a specific manner as a result of phenobarbital and/or 3-methylcholanthrene treatments. Microsomes from females of all ages tested and immature males were essentially indistinguishable on the basis of their total cytochrome P-450 contents and polypeptide patterns. Untreated senescent males were characterized by a reversion of their microsomal polypeptide patterns and total cytochrome P-450 contents to those for females and sexually immature males. In addition, phenobarbital-induced levels of total cytochrome P-450 for senescent males were the lowest observed for all of the groups tested even though their pattern of induced polypeptides was qualitatively the same as that for females.  相似文献   

20.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号