首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MENZEL  C.M. 《Annals of botany》1985,55(1):35-39
Potato plants (Solanum tuberosum L., cv. Sebago) responded similarlyto high temperatures and low irradiance by diverting dry matterto the shoots rather than the tubers, and changes were notedin a range of morphological characteristics. It is proposedthat the effect of both high temperature and low irradianceis brought about by the increased production of a growth substance,possibly gibberellin, which inhibits tuber formation, and thattuber yield is determined by the balance between temperatureand irradiance. Solanum tuberosum L., potato, tuberization, temperature, irradiance, gibberellin  相似文献   

2.
MENZEL  C. M. 《Annals of botany》1983,52(5):697-702
Warm temperatures (35°C day/30°C night) which inhibittuberization in potato (Solanum tuberosum L., cv. Sebago) increasedgibberellin activity in crude extracts from buds, but not frommature leaves, as determined by the lettuce hypocotyl bioassay.Changes in the growth of tubers and stolons indicate the occurrenceof basipetal movement of GA3 applied to the terminal bud ora mature leaf. 14C labelling from GA3 or mevalonic acid injectedjust below the terminal bud was recovered in the lower shoot,stolons and tubers, but the amount transported was greater atcool temperatures (20/15°C). It is concluded that high temperaturespromote the synthesis of gibberellin in the buds rather thantransport to the stolons. Solanum tuberosum L., potato, tuberization, gibberellin  相似文献   

3.
Second growth is an important physiological disorder of thepotato (Solanum tuberosum L.) plant. A model system to studysecond growth was developed using one-leaf cuttings. Photoperiod,temperature, decapitation and leaf removal treatments were carriedout on the plants from which the cuttings were taken and onthe cuttings themselves. Tuberized, one-leaf cuttings takenfrom moderately-induced plants and exposed to 35 °C afterleaf removal showed 95% second growth within 10 d after treatmentinitiation. Conditions that promoted second growth also reducedstarch and dry-matter content, even in tubers that did not developsecond growth. Cuttings, second growth, potato, Solanum tuberosum L, cv, Bintje, Solanum tuberosum L. cv., Désirée, Solanum tuberosum L. cv., Russet Burbank, tuberization, starch content, dry-matter, heat, photoperiod, decapitation, leaf removal  相似文献   

4.
Potato plants (Solanum tuberosum L.) were grown at differentair and soil temperatures to determine the effects of high-temperaturestress on root, tuber, and shoot growth. Cooling the soil (17–27C) at high air temperatures (30–40 C) relieved noneof the visible symptoms of heat stress on shoot growth; norwas the degree of induction to tuberize in leaves increased,as reflected in tuberization of leaf-bud cuttings. Heating thesoil (27–35 C) at cool (17–27 C) air temperatureshad no apparent detrimental effect on shoot growth or inductionof leaves to tuberize. However, in each case hot soil largelyeliminated tuber development. In one experiment stolons grewup out of the hot soil and formed aerial tubers upon reachingthe cool air. When leaf-bud cuttings from induced plants wereused as a model system, high soil temperatures inhibited tuberdevelopment from the buried leaf buds, in the absence of anyroot growth. Apparently the induction of leaves to tuberizeis affected principally by air rather than soil temperature,but expression of the signal to tuberize can be blocked by highsoil temperature. Solanum tuberosum L., potato, temperature stress, soil temperature, tuberization  相似文献   

5.
Potato (Solanum tuberosum L.) plants were grown under long days(LD) of 18 h before a subset of the plants was transferred to10-h photosynthetic periods with either a dark night (SD) oran 8-h dim photoperiod extension with incandescent lamps (DE).Temperature was constant at 21 °C. Leaves were sampled atthe beginning and end of the high density light period for starchanalyses. Potato leaves accumulated starch more rapidly underSD than under LD; and this difference continued after a secondmajor sink, the tuber, began to develop. Starch accumulationover 10 h in SD leaves was three times higher than in LD leaves,even after 17 d of treatment. By this time SD gave higher wholeplant relative growth rates than LD, and the tuber mass of SDplants exceeded 30% of their total plant biomass. The DE treatmentresulted in starch accumulation intermediate to the LD and SDtreatments. Genotypes likewise differed: the earlier genotype,more strongly induced to tuberize, had higher leaf starch accumulationthan the later genotype. The effects of photoperiod and genotypewere also present when potatoes were grown at 27 °C, a temperatureunfavourable for tuberization under LD. Thus the formation ofa strong tuber sink was consistently associated with more rapidleaf starch accumulation. Potato, Solanum tuberosum L., cv. Norchip, photoperiod, temperature, genotype, starch accumulation, partitionin  相似文献   

6.
In potato plants fast and slow growing tubers develop on thesame plant. A hypothetical causality between tuber growth rateand tuber cell number was investigated by determining the tubercell number with the aid of an automatic counting procedure.Our data show a close correlation between tuber size and cellnumber over the whole range of tuber volumes considered (3–28cm3). If the influence of tuber size on cell number is eliminatedby means of a partial correlation analysis, the cell numberof the entire tuber is not significantly correlated with itsgrowth rate. An exclusive consideration of the smaller cells(10–30 µm) in the apical tuber region, where thecell division rate in potato tubers is highest, reveals a loosebut significant partial correlation to tuber growth rate (r= 0.383, P < 0.05). The growth rate of the slow growing tubers of any potato plantmay be enhanced by removing the fast growing tubers. In thefirst few days this enhanced growth rate is not due to a stimulationof cell division rate, but rather due to cell expansion. Potato, Solanum tuberosum L., tuber growth rate, tuber cell number  相似文献   

7.
In solution culture the effect of optimal (20 °C) and supra-optimal(30 °C) root-zone temperatures on root growth and root morphologyof six potato clones (Solanum tuberosum L spp) was studied Growthwas compared with sweet potato (Ipomoea batatas L) and cassava(Manihot esculenta Crantz) Significant genotypical differencesin the responses of potato roots to supra-optimal temperatureswere observed, indicating the potential for selecting heat tolerantpotato clones In both heat tolerant and heat sensitive clones,the size of the root system was reduced by supra-optimal root-zonetemperature This was principally a result of decreased numberand length of lateral roots The first symptom of heat damagewas a reduction in the rate of cell division, followed by cessationof root elongation Bending of the apical root-zone togetherwith the formation of root hairs on the inner (concave) andlateral roots on the outer (convex) side were other symptoms,these coincided with the loss of starch granules in the root-cap Potato, genotypical differences, root morphology, root growth, temperature, Solanum tuberosum L  相似文献   

8.
One-node potato (Solanum tuberosum L. cv. ‘Katahdin’)cuttings were used to study early anatomical changes associatedwith tuberization. Starch deposition and the percentage frequencyof cells in mitosis increased in the medullary region of thebud within 1 d after cutting, whereas increases in average cellsize were not detected until 4 d after cutting. Starch depositionand mitosis were the earliest detectable changes in anatomyassociated with tuber initiation. Potato, Solanum tuberosum L., tuber initiation, cuttings, cell enlargement, mitosis, starch deposition  相似文献   

9.
Cell division and cell expansion during early stages of tuberdevelopment were studied using developing axillary buds on single-leafcuttings from potato (Solanum tuberosum L.). Cuttings takenfrom plants induced to form tubers, by short day (SD) treatment,were compared with cuttings from non-induced (long day, LD)plants. In the apical zone of the buds, cell division occurredfrom the first day after cutting, in both LD and SD cuttings.The planes of these divisions were transverse, associated withelongation of the buds. At day 5, a new orientation of celldivision was observed in the subapical zone of SD cuttings only.These divisions were longitudinal, associated with radial growth.Cell expansion occurred in both SD and LD cuttings, and wasnot uniquely related to the onset of tuber formation. Copyright1999 Annals of Botany Company Solanum tuberosum L., potato, tuber formation, cell division, cell expansion.  相似文献   

10.
Effect of High Temperature on Photosynthesis in Potatoes   总被引:1,自引:0,他引:1  
The effect of high temperatures on the rate of photosynthesiswas studied in several potato varieties. Temperatures of upto 38 °C did not cause a reduction in the photosynthesisof plants that had been grown at these temperatures for longperiods prior to measurement. Higher temperatures of 40–42°C, or the transfer of plants from daytime temperature regimesof 22 °C to 32 °C, caused a reduction in net photosynthesis.This reduction was found to be essentially mesophyllic in origin.High temperature was found to be associated with a decreasein stomatal resistance, an increase in transpiration, and alarger difference between air and leaf temperatures. Dark respirationrates and compensation points for CO2 concentration were alsogreater at the high temperatures. It was concluded that thepotato crop can be adopted to grow and have an adequate rateof photosynthesis even at relatively high temperatures. Source-sinkrelationships, which were modified by the later formation oftubers at higher temperatures, did not affect photosynthesisin this study. Varietal differences in resistance to heat stresswere observed, with the clone Cl-884 showing a more efficientcapacity for photosynthesis at temperatures up to 40 °Cthan many commonly grown varieties. High temperature, photosynthesis, potato, Solanum tuberosum L  相似文献   

11.
MENZEL  C. M. 《Annals of botany》1983,52(1):65-69
Tuber formation in intact potato plants (Solanum tuberosum L.cv. Sebago) was reduced by high shoot or root temperatures andstrongly inhibited when both were high. When both the shootand root temperatures were high, disbudding strongly promotedtuberization. There was a smaller increase with warm roots andcool shoots, but no response with warm shoots and cool roots.When both the shoots and roots were cool, disbudding reducedtuberization. Exogenous GA3, effectively substituted for thebuds at high temperatures, completely preventing tuberization.In apical cuttings, removal of the terminal bud, but not theroots, reduced the inhibitory effects of high temperatures ontuberization. The experiment indicates that tuber productionmay be controlled by at least three factors: a promoter, whichis not assimilate, produced by the buds at cool temperatures;an inhibitor, derived from the buds, but dependent on warm roottemperatures for its formation; and a second inhibitor derivedfrom the mature leaves and produced in response to warm shoottemperatures. Solanum tuberosumL, potato, tuberization, temperature, disbudding, gibberellic acid  相似文献   

12.
KAHN  B. A.; EWING  E. E. 《Annals of botany》1983,52(6):861-871
Potato plants (Solanum tuberosum L. cvs Chippewa and Katahdin)were grown in a glasshouse under continuous light. Various numbersof long (16 h) nights were given to these plants and stem cuttingswere taken. Treatments were applied to the cuttings, which werethen placed in a mist bench under continuous light and examinedfor tuberization after 12 days. The general tendency for the strongest tuberization to occurat the most basipetal nodes, which is commonly seen with intactpotato plants, was also found on stem cuttings. This patterncould not be attributed primarily to orientation with respectto gravity, proximity to the mother tuber, or age of buriedbuds. Buried buds farthest from active leaves tended to tuberizethe most strongly. However, distance of the buried bud fromstem exposed to light may have been of equal or greater importance. potato, Solanum tuberosum L., stem cuttings, tuberization  相似文献   

13.
MENZEL  C. M. 《Annals of botany》1981,47(6):727-733
The role of the terminal and axillary buds, as presumptive organsof gibberellin synthesis, in the control of tuberization inpotato (Solanum tuberosum L., cv. Sebago) at high temperatureswas studied. Decapitation alone strongly promoted the outgrowthof axillary buds, but did not promote tubenzation. When growthof the axillary buds was suppressed by the use of chemical pruningagents (MH, TIBA or 1-decanol), tuberization was promoted. Manualremoval of the buds promoted tuberization to a similar extent.The results are consistent with the hypothesis that the budsare major sites of gibberellin synthesis in the potato, andthat high temperatures stimulate the synthesis of gibberellinsand their export to the stolons, where they inhibit tuber formation. Solarium tuberosum L., potato, tuberization, temperature, disbudding, chemical pruning, gibberellins  相似文献   

14.
In Vitro Propagation of Potato (Solanum tuberosum L.)   总被引:4,自引:0,他引:4  
HUSSEY  G.; STACEY  N. J. 《Annals of botany》1981,48(6):787-796
Potato shoots were propagated in vitro by placing nodes fromsprouted tubers on Murashige and Skoog type medium without hormones.The vigour of growth and the rate of node production increasedwith both day-length and temperature over the ranges 8–24h and 15–25 °C respectively. Propagation rates ofup to x 10 per month were obtained. In vitro plantlets spontaneouslyformed roots either in agar or liquid cultures. Plantlets leftin the culture jars for 3–4 months eventually senescedand formed small tubers in 16 and 24 h day-lengths. In a day-lengthof 8 h vegetative growth continued by branching and no tuberswere formed. Solanum tuberosum L., potato, tissue culture, propagation, temperature, day-length  相似文献   

15.
Compared with late cultivars, early potato cultivars allocatea larger part of the available assimilates to the tubers earlyin the growing season, leading to shorter growing periods andlower yields. A dynamic simulation model, integrating effectivetemperature and source –sink relationships of the crop,was used to analyse this relation, using data from experimentsin the Netherlands carried out over 5 years. Dry matter allocationto the tuber in these field experiments was simulated well whenthe tuber was considered as a dominant sink that affects earlinessof a potato crop in two ways: early allocation of assimilatesto the tubers stops foliage growth early in the season and reducesthe longevity of individual leaves. In a sensitivity analysisthe influence of tuber initiation, leaf longevity and the maximumrelative tuber growth rate (Rtb) on assimilate allocation andcrop earliness was evaluated. It was found that the maximumrelative tuber growth rate can influence crop earliness morethan the other two factors, but when conditions for tuber growthare optimal, the leaf longevity is most important. Solanum tuberosumL.; simulation model; source –sink relationships; cultivars  相似文献   

16.
The effect of advanced meristem age on growth and accumulationof plant nitrogen (N) in potato (Solanum tuberosum L.) was studied.Etiolated plantlets, excised from sprouted, single-eye-containingcores from 7 and 19-month-old seed-tubers, were transplantedinto aerated nutrient culture. Rates of shoot and root dry matterand shoot soluble-N (which included nitrate-N) accumulationwere similar for plants from both meristem ages over a 30 dinterval of log-linear growth. The rate at which nitrate-N accumulatedwas consistently 17 per cent higher in shoots from 19-month-oldcompared to those from 7-month-old meristems. However, accumulationof free amino-N and soluble protein-N were 21 and 15 per centlower, respectively in shoots from 19-month-old meristems. Abuild-up of shoot nitrate, along with lower rates of accumulationof amino-N and soluble protein-N, suggests a lower capacityfor nitrate reduction during early growth of plants from oldermeristems. Furthermore, these effects can be attributed to age-inducedchanges in the meristem or bud tissue as the plants were separatedfrom the tuber tissue initially in the study. Long-term ageingof seed-potatoes apparently affects changes within meristemsthat translate into a lower capacity to accumulate reduced formsof nitrogen during early plant growth. Potatoes (Solanum tuberosum L.), meristem age, nitrogen metabolism, plant growth potential  相似文献   

17.
Potato plants (Solanum tuberosum L.) were grown in water culturein a controlled environment. Cooling (+8°C) of individualtubers decreased their growth rates and increased the growthrates of non-cooled tubers of the same plant. The carbohydrateconcentration in non-cooled and cooled tubers did not differsignificantly, but 14C-import from labelled photosynthate waslower in cooled than in non-cooled tubers. The markedly lowerconversion rate of ethanol-soluble 14C to starch in cooled,in comparison to non-cooled tubers, was not associated withsignificant differences in the in vitro activities of starchsynthase, ADPG-pyrophosphorylase and starch phosphorylase understandard assay conditions (+30°C). However, the Q10-valuesof the enzymes differed in vitro in the temperature range between30°C and 8°C, leading to a marked decrease in the activityratio of ADPG-pyrophosphorylase/starch phosphorylase in cooledtubers. In tubers differing in growth rates without manipulation, 14d after tuber initiation significant positive correlations werefound between 14C-concentration of tuber tissue and the in vitroactivities of starch synthase and ADPG-pyrophosphorylase anda significant negative correlation between 14C-concentrationand starch phosphorylase. In contrast, in tubers which wereanalysed 5 d after initiation, there were only small differencesbetween tubers in growth rate, 14C import and the activity ratioADPG-pyrophosphorylase/starch phosphorylase. From various directand indirect evidence it is concluded that the growth rate ofindividual tubers, and thus the sink strength, is at least inpart controlled by the activity of starch synthesizing enzymes. Key words: Potato tuber, cooling, starch synthesizing enzymes  相似文献   

18.
DAVIES  H. V.; VIOLA  R. 《Annals of botany》1988,61(6):689-693
The treatment of potato tubers with 150 µmol dm–3gibberellic acid (GA3) stimulated starch breakdown and hexoseaccumulation in tuber tissues and the transfer of dry matterto stems. These effects could not be accounted for by enhancedactivities of starch phosphorylase, amylase and acid invertase.Indeed enzyme activities either declined or remained relativelyconstant as starch degradation and hexose accumulation proceeded.Changes in the rate of starch depletion were related to changesin sink strength and sink type, the onset of tuber initiationin controls causing the rate of starch degradation to exceedthat in GA3-treated tissues, in which tuberization was inhibited. Solanum tuberosum L., gibberellic acid, starch breakdown  相似文献   

19.
Kirk, W W., Davies, H. V. and Marshall, B. 1985. The effectof temperature on the initiation of leaf primordia in developingpotato sprouts.—J. exp. Bot. 36: 1634–1643. Initiation of leaf primordia in potato sprouted out of soilin light was an asymptotic function of thermal time and thebase temperature for the process was 3.6 °C. The parametervalues of the asymptotic function were universal for cv. MarisPiper. The estimated rate of leaf primordium initiation decreasedlinearly from 0.033 leaf pnmordia (K day)–1 when abouteight leaf primordia were present to zero after a maximum numberof 24 leaf primordia had been initiated. The decrease in rateof development with increasing number of primordia may be dueto depletion of mother tuber resources. The transition of theapex from a vegetative to a reproductive state was not the factorlimiting the initiation of additional leaf primordia. Key words: Potato, Solanum tuberosum L., leaf primordia initiation, temperature, thermal time, development  相似文献   

20.
The possible roles of oxygen and carbon dioxide treatments inthe presence or absence of ethylene on tuber dormancy releasein potato (Solanum tuberosumL.) were examined. Using two gascompositions (I: 60% CO2–20% O2–20% N2and II: 20%CO2–40% O2–40% N2), the phase of tuber dormancyand previous storage temperature were demonstrated to be importantparameters for dormancy release by these gas mixtures. Gas Icaused decreased abscisic acid (ABA) levels within 24 h regardlessof previous storage temperature, although this effect was reversible.Exogenous C2H4, an effective dormancy release agent, also causeddecreased ABA levels within 24 h. It also enhanced dormancyrelease and further promoted ABA losses by gas I. Gas II treatmentled to slight reductions in ABA levels that were further decreasedby C2H4. Sprout length was modelled successfully by multipleregression analysis in terms of glucose and ABA levels withinthe apical eye tissues of Russet Burbank tubers immediatelyafter, and regardless of, previous gas treatments or storagetemperatures. Solanum tuberosum,potato, abscisic acid, ethylene, carbon dioxide, oxygen, dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号