首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shatrova A  Aksenov ND  Zenin VV 《Tsitologiia》2002,44(11):1068-1078
Studying the effect of topoisomerase II (topo II) inhibitors on cell passage through mitosis seems to be important for understanding the role of this enzyme during chromosome condensation and segregation. A flow cytometric assay (Zenin et al., 2001) allowed to determine the mitotic index, and to discriminate between not only cells in G2 and M phases (including metaphase and anaphase cells), but also cells in pseudo-G1 with 4c DNA content. It is shown that topo II catalytic inhibitor ICRF-193 blocks G2-M transition in a lymphoblastoid cell line GM-130. Addition of caffeine to cells abrogated a block of their entering mitosis but not the inhibitor action. Cells entered mitosis, which was proven by the presence of chromosomes in the examined specimen, and, bypassing anaphase, appeared in pseudo-G1 with 4c DNA content. We have found that in the presence of ICRF-193 cells, GM-130 and Hep-2 lines, previously blocked by nocodazole when in mitosis and then washed, pass through metaphase, enter anaphase and leave it to pass to pseudo-G1 with the 4c DNA content. Thus, by inhibiting topo II activity ICRF-193 causes abnormal mitotic transition.  相似文献   

2.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

3.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

4.
Cohesin maintains sister chromatid cohesion until its Rad21/Scc1/Mcd1 is cleaved by separase during anaphase. DNA topoisomerase II (topo II) maintains the proper topology of chromatid DNAs and is essential for chromosome segregation. Here we report direct observations of mitotic progression in individual HeLa cells after functional disruptions of hRad21, NIPBL, a loading factor for hRad21, and topo II alpha,beta by RNAi and a topo II inhibitor, ICRF-193. Mitosis is delayed in a Mad2-dependent manner after disruption of either or both cohesin and topo II. In hRad21 depletion, interphase pericentric architecture becomes aberrant, and anaphase is virtually permanently delayed as preseparated chromosomes are misaligned on the metaphase spindle. Topo II disruption perturbs centromere organization leading to intense Bub1, but no Mad2, on kinetochores and sustains a Mad2-dependent delay in anaphase onset with persisting securin. Thus topo II impinges upon centromere/kinetochore function. Disruption of topo II by RNAi or ICRF-193 overrides the mitotic delay induced by cohesin depletion: sister centromeres are aligned and anaphase spindle movements occur. The ensuing accumulation of catenations in preseparated sister chromatids may overcome the reduced tension arising from cohesin depletion, causing the override. Cohesin and topo II have distinct, yet coordinated functions in metaphase alignment.  相似文献   

5.
6.
Germe T  Hyrien O 《EMBO reports》2005,6(8):729-735
DNA topoisomerase II (topo II) is involved in unlinking replicating DNA and organizing mitotic chromosomes. Topo II is the target of many antitumour drugs. Topo II inhibition results in extensive catenation of newly replicated DNA and may potentially perturb chromatin assembly. Here, we show that the topo II inhibitor ICRF-193 does not prevent the bulk of nucleosome deposition, but perturbs nucleosome spacing in Xenopus egg extracts. This is due to the trapping of topo II-closed clamps on the DNA rather than increased DNA catenation. Inhibition of replicative DNA decatenation has in itself little or no effect on nucleosome deposition and spacing, suggesting that DNA can easily accommodate the sharp bending constraints imposed by the co-habitation of nucleosomes and catenane nodes. Chromatin perturbation by topo II clamps may explain some dominant cellular effects of ICRF-193. Nucleosome-driven bending of precatenane nodes may facilitate their unlinking by topo II during unperturbed replication.  相似文献   

7.
Here we report that DNA decatenation is not a physical requirement for the formation of mammalian chromosomes containing a two-armed chromosome scaffold. 2-aminopurine override of G2 arrest imposed by VM-26 or ICRF-193, which inhibit topoisomerase II (topo II)–dependent DNA decatenation, results in the activation of p34cdc2 kinase and entry into mitosis. After override of a VM-26–dependent checkpoint, morphologically normal compact chromosomes form with paired axial cores containing topo II and ScII. Despite its capacity to form chromosomes of normal appearance, the chromatin remains covalently complexed with topo II at continuous levels during G2 arrest with VM-26. Override of an ICRF-193 block, which inhibits topo II–dependent decatenation at an earlier step than VM-26, also generates chromosomes with two distinct, but elongated, parallel arms containing topo II and ScII. These data demonstrate that DNA decatenation is required to pass a G2 checkpoint, but not to restructure chromatin for chromosome formation. We propose that the chromosome core structure is templated during interphase, before DNA decatenation, and that condensation of the two-armed chromosome scaffold can therefore occur independently of the formation of two intact and separate DNA helices.  相似文献   

8.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

9.
The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF-193 induced ATM autophosphorylation and ATM-dependent phosphorylation of Ser15-p53 and Thr68 in Chk2, but no appreciable phosphorylation of Ser139-H2AX or Ser345-Chk1. The results suggest that inhibition of topo II induces ATM to phosphorylate selected targets that contribute to a G2 arrest independently of DNA damage.  相似文献   

10.
We have analyzed the topological organization of chromatin inside mitotic chromosomes. We show that mitotic chromatin is heavily self-entangled through experiments in which topoisomerase (topo) II is observed to reduce mitotic chromosome elastic stiffness. Single chromosomes were relaxed by 35% by exogenously added topo II in a manner that depends on hydrolysable adenosine triphosphate (ATP), whereas an inactive topo II cleavage mutant did not change chromosome stiffness. Moreover, experiments using type I topos produced much smaller relaxation effects than topo II, indicating that chromosome relaxation by topo II is caused by decatenation and/or unknotting of double-stranded DNA. In further experiments in which chromosomes are first exposed to protease to partially release protein constraints on chromatin, ATP alone relaxes mitotic chromosomes. The topo II–specific inhibitor ICRF-187 blocks this effect, indicating that it is caused by endogenous topo II bound to the chromosome. Our experiments show that DNA entanglements act in concert with protein-mediated compaction to fold chromatin into mitotic chromosomes.  相似文献   

11.
When DNA topoisomerase II (topo II) activity is inhibited with a non-DNA-damaging topo II inhibitor (ICRF-193), mammalian cells become checkpoint arrested in G2-phase. In this study, we analyzed chromosome structure in cells that bypassed this checkpoint. We observed a novel type of chromosome aberration, which we call Ω-figures. These are entangled chromosome regions that indicate the persistence of catenations between nonhomologous sequences. The number of Ω- figures per cell increased sharply as cells evaded the transient block imposed by the topo II-dependent checkpoint, and the presence of caffeine (a checkpoint-evading agent) potentiated this increase. Thus, the removal of nonreplicative catenations, a process that promotes chromosome individualization in G2, may be monitored by the topo II-dependent checkpoint in mammals. Received: 19 July 1999; in revised form: 20 October 1999 / Accepted: 7 January 2000  相似文献   

12.
Topoisomerases are known to aid DNA replication by breaking and resealing supercoiled DNA. Consequently, cells exposed to topoisomerase inhibitors before or during the S (DNA synthetic) phase of the cell cycle undergo abnormal DNA replication and become irreversibly blocked in the G2 (pre-mitosis) phase. We report that following a 4-h exposure to topoisomerase II inhibitors, murine erythroleukemic cells (MELC) do not form mitotic figures but exhibit a time-dependent progression into G2 (4N DNA) and greater than G2 (up to 8N DNA) stages of the cell cycle. Following exposure to the topoisomerase I inhibitor camptothecin, recovering MELC also exhibit greater than G2 polyploidy, but to a considerably lesser degree: mitotic figures are present and a subpopulation of cells resumes cycling. However, both topo I and topo II inhibitors induce maximal percentages of greater than G2 cells when synchronized MELC are in the G2/M phase at the time of exposure. This suggests that, in addition to their S-phase action, topoisomerase inhibitors can interfere with chromosome condensation during G2 and, in so doing, induce polyploidy.  相似文献   

13.
A number of clinically useful anticancer drugs, including etoposide (VP-16), target DNA topoisomerase (topo) II. These drugs, referred to as topo II poisons, stabilize cleavable complexes, thereby generating DNA double-strand breaks. Bis-2,6-dioxopiperazines such as ICRF-193 also inhibit topo II by inducing a distinct type of DNA damage, termed topo II clamps, which has been believed to be devoid of double-strand breaks. Despite the biological and clinical importance, the molecular mechanisms for the repair of topo II-mediated DNA damage remain largely unknown. Here, we perform genetic analyses using the chicken DT40 cell line to investigate how DNA lesions caused by topo II inhibitors are repaired. Notably, we show that LIG4-/- and KU70-/- cells, which are defective in nonhomologous DNA end-joining (NHEJ), are extremely sensitive to both VP-16 and ICRF-193. In contrast, RAD54-/- cells (defective in homologous recombination) are much less hypersensitive to VP-16 than the NHEJ mutants and, more importantly, are not hypersensitive to ICRF-193. Our results provide the first evidence that NHEJ is the predominant pathway for the repair of topo II-mediated DNA damage; that is, cleavable complexes and topo II clamps. The outstandingly increased cytotoxicity of topo II inhibitors in the absence of NHEJ suggests that simultaneous inhibition of topo II and NHEJ would provide a powerful protocol in cancer chemotherapy involving topo II inhibitors.  相似文献   

14.
Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving gamma-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.  相似文献   

15.
Differentiation of Drosophila Schneider cells caused by DNA double-strand break (DSB)-inducing topoisomerase II (topo II) inhibitors were attenuated by ICRF-193, a non-DNA-damaging topo II inhibitor. ICRF-193 did not inhibit differentiation induced by neocarzinostatin (NCS), a drug that causes DNA DSBs independent of topo II. Schneider cells differentiated upon treatment with gamma-ray. These results suggest that DNA DSBs induce myogenic differentiation of Schneider cells. We also found DNA replication inhibitors, hydroxyurea (HU), aphidicolin, and ethylmethanesulfonate (EMS) induced myogenic differentiation of Schneider cells. HU-induced differentiation was inhibited upon pretreatment of cells with chemical inhibitors of PP 1/2A, p38 MAPK, JNK, and proteasome. RT-PCR analysis revealed that the expressions of fusion-competent myoblast-specific genes lmd, sns, and del were induced in Schneider cells upon treatment with NCS or HU, whereas expressions of three founder cell-specific genes, duf, ants, and rols, were undetectable. These results indicate that the expression of fusion competent-myoblast-specific genes is induced during myogenic differentiation of Drosophila Schneider cells by DNA DSBs or replication inhibition.  相似文献   

16.
Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progression in a checkpoint-independent manner, without altering replicon size. In contrast, topo IIα depletion accelerated origin cluster activation, and topo IIα add-back negated overinitiation. Therefore, topo IIα is not required for DNA replication, but topo IIα clamps slow replication, probably by forming roadblocks. ICRF-193 had no effect on DNA synthesis when added after nuclear assembly, confirming that topo IIα activity is dispensable for replication and revealing that topo IIα clamps formed on replicating DNA do not block replication, presumably because topo IIα acts behind and not in front of forks. Topo IIα depletion increased, and topo IIα addition reduced, chromatin loading of MCM2-7 replicative helicase, whereas ICRF-193 did not affect MCM2-7 loading. Therefore, topo IIα restrains MCM2-7 loading in an ICRF-193-resistant manner during origin licensing, suggesting a model for establishing the sequential firing of origin clusters.  相似文献   

17.
18.
The glucose-regulated stress response of cancer cells leads to a decreased expression of DNA topoisomerase IIα (topo IIα) and a cell cycle arrest at the G1 phase. In this study, we found that the topo IIα decrease occurred specifically during the G1 arrest in human colon adenocarcinoma HT-29 cells. The intracelluar level of topo IIα in HT-29 cells was relatively constant regardless of cell cycle position in the exponentially growing state, determined using a centrifugal elutriation technique and synchronizing the cells with a mitotic inhibitor nocodazole. Interestingly, when the cell cycle was arrested in the M phase by nocodazole, the topo IIα level remained high even in stressed cells. After the stressed cells were released from the M phase, topo IIα steeply decreased along with cell cycle progression followed by the next G1 arrest. This decrease in nuclear topo IIα protein was completely inhibited by selective inhibitors for proteasome. Furthermore, we found that proteasome activity was elevated three to fourfold in the nuclear extract of stressed cells over unstressed cells. Accordingly, there were increased amounts of nuclear proteasome subunits, although total intracellular content of the subunits did not change in stressed cells. These findings indicate that the expression of topo IIα in stressed cells is downregulated at the G1 phase by proteasome-mediated degradation and that the proteolysis of topo IIα can be facilitated by the nuclear accumulation of proteasome. J. Cell. Physiol. 180:97–104, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号