首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

2.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

3.
The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate at a rate of 5.6 micromol x min(-1) x mg(-1) (k(cat) 4.4 s(-1)). The Michaelis constants for 1-deoxy-D-xylulose 5-phosphate and the cosubstrate NADPH are 132 and 30 microm, respectively. The enzyme has an absolute requirement for divalent metal ions, preferably Mn2+ and Mg2+, and is inhibited by fosmidomycin with a Ki of 85 nm. The pH optimum is 8.0. NADH can substitute for NADPH, albeit at a low rate (14% as compared to NADPH). The enzyme catalyzes the reverse reaction at a rate of 2.1 micromol x min(-1) x mg(-1).  相似文献   

4.
In recent investigations we were able to demonstrate that the NADP-dependent aldehyde dehydrogenase of Acinetobacter calcoaceticus is an inducible enzyme localized in intracytoplasmic membranes limiting alkane inclusions. Long-chain aliphatic hydrocarbons and alkanols are inducers of the enzyme. It was purified by us and now kinetically characterized using the enzyme-micelle form, which contains bacterial phospholipids and a detergent (sodium cholate), too. The pH optimum of aldehyde dehydrogenase was determined to be at pH 10. The enzyme showed substrate inhibition (by aldehyde excess). The Ks and Km values of the leading substrate NADP+ were found to be 8.6 X 10(-5) and 10.3 X 10(-5)M independent of the chain-length of the aldehydes. The Km values of the aldehydes decreased depending on increasing chain-length (butanal: 1.6 X 10(-3), decanal: 1.5 X 10(-6)M). The Ki values (for inhibition by aldehyde excess) showed a similar behaviour (butanal: 7.5 X 10(-3), decanal: 3.5 X 10(-5)M) as well as the optimal aldehyde concentrations inducing the "maximal" reaction velocity (butanal: 5mM, decanal: 6 microM). The number of inhibiting aldehyde molecules per enzyme-substrate complex was determined to be n = 1. NADPH showed product inhibition kinetics (Ki(NADPH) = 2.2 X 10(-4)M), fatty acids did not. We were unable to measure a reverse reaction. The following ions and organic compounds were non-competitive inhibitors of the enzyme: Sn2+, Fe2+, Cu2+, BO3(3-), CN-, EDTA, o-phenanthroline, p-chloromercuri-benzoate, mercaptoethanol, phenylmethylsulfonyl fluoride, and diisopropylfluorophosphate; iodoacetate did not influence enzyme activity. Chloral hydrate was a competitive inhibitor of the aldehydes. Ethyl butyrate activates the enzyme, dependent on the chain-length of the aldehyde substrates.  相似文献   

5.
1. Mitochondria isolated from abdomen muscle of crayfish Orconectes limosus exhibit malic enzyme activity in the presence of L-malate, NADP and Mn2+ ions after addition of Triton X-100. Under optimal conditions about 230 nmole of reduced NADP and an equivalent amount of pyruvate are produced per min per mg of mitochondrial protein. 2. The pH optimum for decarboxylation of L-malate is about 7.5. 3. The apparent Km for L-malate, NADP and Mn2+ ions was found to be 0.66, 0.012, and 0.0025 mM, respectively. 4. The requirement for Mn2+ can be replaced by Mg2+, Co2+ and Ni2+ ions; however, higher concentrations of these ions than Mn2+ are required for a full stimulation of malic enzyme activity. 5. Oxaloacetate and pyruvate inhibited the enzyme activity in a competitive manner with apparent Ki values of 0.05 mM and 5.4 mM, respectively.  相似文献   

6.
1. Biochemical properties of delta 1-pyrroline-5-carboxylate reductase from d. melanogaster have been investigated. 2. The enzyme is stable below 4 degrees C. 3. the pH optimum of the enzyme is 5.7. It is rapidly inactivated below pH 5.4. 4. The Km values for NADPH and delta 1-pyrroline-5-carboxylate are 1.6 x 10-5 and 2.5 x 10-6 M, respectively. 5. the estimated molecular weight of the enzyme is 225,000. 6. the enzyme is weakly inhibited by L-proline (Ki = 0.12 M).  相似文献   

7.
D-(+)-Lactate dehydrogenase from Lactobacillus murinus was purified 670-fold. The Mr was 140,000 as determined by gel filtration. Maximum enzymatic activity was observed at 25 degrees C and pH 6.0 in 200 mM Na2KPO4 buffer. When the temperature was increased from 60 to 65 degrees C, the enzyme was completely inactive in 5 min. The apparent Km for pyruvate and NADH were 4.7 x 10(-4) and 1 x 10(-5) M, respectively. Pyruvate analogs such as oxalate, oxamate, 2-oxobutyrate, and malonate acted as a competitive inhibitors. L-Lactate and L-malate were noncompetitive inhibitors.  相似文献   

8.
zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously.  相似文献   

9.
Pollock VV  Barber MJ 《Biochemistry》2001,40(5):1430-1440
Rhodobacter sphaeroides f. sp. denitrificans biotin sulfoxide reductase catalyzes the reduction of d-biotin d-sulfoxide (BSO) to biotin. Initial rate studies of the homogeneous recombinant enzyme, expressed in Escherichia coli, have demonstrated that the purified protein utilizes NADPH as a facile electron donor in the absence of any additional auxiliary proteins. We have previously shown [Pollock, V. V., and Barber, M. J. (1997) J. Biol. Chem. 272, 3355-3362] that, at pH 8 and in the presence of saturating concentrations of BSO, the enzyme exhibits, a marked preference for NADPH (k(cat,app) = 500 s(-1), K(m,app) = 269 microM, and k(cat,app)/K(m,app) = 1.86 x 10(6) M(-1) s(-1)) compared to NADH (k(cat,app) = 47 s(-1), K(m,app) = 394 microM, and k(cat,app)/K(m,app) = 1.19 x 10(5) M(-1) s(-1)). Production of biotin using NADPH as the electron donor was confirmed by both the disk biological assay and by reversed-phase HPLC analysis of the reaction products. The purified enzyme also utilized ferricyanide as an artificial electron acceptor, which effectively suppressed biotin sulfoxide reduction and biotin formation. Analysis of the enzyme isolated from tungsten-grown cells yielded decreased reduced methyl viologen:BSO reductase, NADPH:BSO reductase, and NADPH:FR activities, confirming that Mo is required for all activities. Kinetic analyses of substrate inhibition profiles revealed that the enzyme followed a Ping Pong Bi-Bi mechanism with both NADPH and BSO exhibiting double competitive substrate inhibition. Replots of the 1/v-axes intercepts of the parallel asymptotes obtained at several low concentrations of fixed substrate yielded a K(m) for BSO of 714 and 65 microM for NADPH. In contrast, utilizing NADH as an electron donor, the replots yielded a K(m) for BSO of 132 microM and 1.25 mM for NADH. Slope replots of data obtained at high concentrations of BSO yielded a K(i) for BSO of 6.10 mM and 900 microM for NADPH. Kinetic isotope studies utilizing stereospecifically deuterated NADPD indicated that BSO reductase uses specifically the 4R-hydrogen of the nicotinamide ring. Cyanide inhibited NADPH:BSO and NADPH:FR activities in a reversible manner while diethylpyrocarbonate treatment resulted in complete irreversible inactivation of the enzyme concomitant with molybdenum cofactor release, indicating that histidine residues are involved in cofactor-binding.  相似文献   

10.
A study of the cofactor requirements of C17-20 lyase was carried out using human testis tissue obtained at the time of orchiectomy for treatment of prostatic carcinoma. Washed microsomal fractions were prepared from frozen human testes using a KCl containing buffer. The preparation revealed dose-dependent activity of C17-20 lyase in the presence of either NADPH or commercial or purified NADH. The Km of NADH for the enzyme was of the order of 10(-3) M and the Km of NADPH was determined as 1.6 X 10(-5) M. NADH also provided synergistic enhancement of NADPH-mediated lyase activity, and decreased the Km of NADPH for the lyase but did not change the Vmax of NADPH-mediated lyase activity. Carbon monoxide inhibited both NADH and NADPH-mediated lyase activities indicating that both activities are catalyzed by cytochrome P-450. Cations including Ca2+, Mg2+ and Mn2+ were found to inhibit the NADPH-mediated lyase activity but enhanced the lyase activity in the presence of NADH. The results indicate both the presence of NADH-mediated C17-20 lyase activity and the synergistic effect of NADH on NADPH-mediated lyase activity in the human testis.  相似文献   

11.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The maximum velocity of the reaction catalyzed by the pigeon liver malic enzyme depends on the ionization of a functional group of pKa 6.7. This pKa value is independent of temperature within the range 30 degrees-49 degrees C, suggesting the ionization of a carboxyl group. The enzyme activity is inactivated by N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K) at pH 6.0 and 25 degrees C. N-Methylhydroxamine regenerates the enzymatic activity whereas glycine ethyl ester does not. The addition of Mn2+, NADP+, and L-malate to the incubation mixture decreases the inactivation rate, suggesting that the reaction takes place in the active center. The binding capacities of the modified enzyme with NADP+, L-malate, pyruvate, and Mn2+ are not impaired. The kinetic and chemical evidence indicates that the inactivation is due to the modification of a carboxyl group which may be from glutamyl or aspartyl residues of the enzyme. This carboxyl group might function as a general acid-base catalyst. A detailed mechanism in terms of the exact amino acid residues involved is proposed.  相似文献   

13.
The subcellular distribution and properties of rat hypothalamic progesterone 5 alpha-reductase, which accelerates the conversion of progesterone to 5 alpha-pregnane-3,20-dione, have been investigated by utilizing 3H-labeled substrate and a reverse isotopic dilution assay system. The enxymic activity was associated primarily with a cell debris-membranes fraction deribed from the 100 x g pellet. This fraction contained mainly membrane-like particulates and was free of nuclei. Little or no activity was associated with the purified nuclei. The hypothalamic 5 alpha-reductase was stimulated by NADPH but not by NADH. The reaction proceeded optimally over a pH range of 6.0 to 7.2 and at a temperaturhe substrate specificity of the enzyme for other delta 4-3-ketosteroids and the ability of these steroids to inhibit the 5 alpha reduction of [1,2-3H]progesterone as well as the effect of 17 beta-estradiol were also studied. 20 alpha-hydroxypregn-4-en-3-one was more reactive that progesterone, while testosterone was the least reactive. The estimated Km for 20 alpha-hydroxypregn-4-en-3-one was 8.6 +/- 1.9 x 10(-7) M, and for testosterone, 1.6 +/- 1.4 x 10(-5) M. The inhibition studies indicate that 20 alpha-hydroxypregn-4-en-3-one and 17 beta-estradiol are competitive and noncompetitive inhibitors, respectively, of the 5 alpha reduction of progesterone with Ki of 6.0 +/- 3.0 x 10(-8) M for 20 alpha-hydroxypregn-4-en-3-one and Kii (intercept inhibition constant) of 2.6 +/- 0.7 x 10(-5) M and Kis (slope inhibition constant) of 3.6 +/- 0.6 x 10(-5) M for 17 beta-estradiol. Testosterone is a poor competitive inhibitor of the reaction.  相似文献   

14.
The mitochondrial NAD(P)+ malic enzyme [EC 1.1.1.39, L-malate:NAD+ oxidoreductase (decarboxylating)] was purified from rabbit heart to a specific activity of 7 units (mumol/min)/mg at 23 degrees C. A study of the reductive carboxylation reaction indicates that this enzymic reaction is reversible. The rate of the reductive carboxylation reaction appears to be completely inhibited at an NADH concentration of 0.92 mM. A substrate saturation curve of this reaction with NADH as the varied substrate describes this inhibition. The apparent kinetic parameters for this reaction are Ka(NADH) = 239 microM and Vr = 1.1 mumol/min per mg at 23 degrees C. The steady-state product-inhibition patterns for pyruvate and NADH indicate a sequential binding of the substrates: NAD+ followed by L-malate. These data also indicate that NADH is the last product released. A steady-state kinetic model is proposed that incorporates NADH-enzyme dead-end complexes.  相似文献   

15.
The cDNAs encoding alpha 3-subunits of rat brain Na+,K+-ATPase and the neomycin resistance gene were incorporated into BALB/c 3T3 cells by the co-transfection method. Stably transformed cells were selected with 300 micrograms/ml of neomycin (G-418) for 6 weeks. Northern blot analysis using the 3'-non-translated region of the cDNA as a probe revealed that the alpha 3 mRNA appeared in transfected cells. Na+,K+-ATPase activity of the transfected cells was twice that of wild-type cells. Regarding ouabain sensitivity, the Na+,K+-ATPase showed two Ki values for ouabain (8 x 10(-8) and 4.5 x 10(-5) M) in transfected cells while wild-type cells displayed only the higher value. Ouabain sensitivity of Rb+ uptake also demonstrated two Ki values in the transfected cells (8 x 10(-8) and 4 x 10(-5) M) and a Ki in wild-type cells of 4 x 10(-5) M. It is concluded that alpha 3 is a highly ouabain-sensitive catalytic subunit of Na+,K+-ATPase. It is also suggested that ouabain sensitivity is exclusively determined by the properties of the alpha-subunit rather than the beta-subunit. This is the first report on the catalytic characteristics of the alpha 3 isoform of Na+,K+-ATPase.  相似文献   

16.
Adenylosuccinase catalyses the conversion of adenylosuccinic acid to AMP and fumarate. We have developed a coupled enzyme staining procedure applicable to nitrocellulose blots after agarose gel isoelectrofocusing of rat muscle adenylosuccinase. The coupling enzymes, fumarase (fumarate to L-malate) and malic enzyme (L-malate to pyruvate and NADPH), are adsorbed to nitrocellulose prior to blotting. The NADPH, mediated by phenazine methosulfate, converts a tetrazolium salt to its blue formazan. This procedure demonstrated that rat muscle adenylosuccinase consists of three isomeric forms present in similar amounts.  相似文献   

17.
Pigeon liver malic enzyme (malate dehydrogenase (decarboxylating), EC 1.1.1.40) was reversibly inactivated by periodate-oxidized NADP in a biphasic manner. The reversibility could be made irreversible by treating the modified enzyme with sodium borohydride. The inactivation showed saturation kinetics and could be prevented by nucleotide (NADP or NADPH). Fully protection was afforded by the combination of NADP, Mn2+ and L-malate. Oxidized NADP was also found to be a coenzyme and noncompetitive inhibitor of L-malate in the oxidative decarboxylase reaction catalyzed by malic enzyme.  相似文献   

18.
The kinetic mechanism of the cytosolic NADP(+)-dependent malic enzyme from cultured human breast cancer cell line was studied by steady-state kinetics. In the direction of oxidative decarboxylation, the initial-velocity and product-inhibition studies indicate that the enzyme reaction follows a sequential ordered Bi-Ter kinetic mechanism with NADP+ as the leading substrate followed by L-malate. The products are released in the order of CO2, pyruvate, and NADPH. The enzyme is unstable at high salt concentration and elevated temperature. However, it is stable for at least 20 min under the assay conditions. Tartronate (2-hydroxymalonate) was found to be a noncompetitive inhibitor for the enzyme with respect to L-malate. The kinetic mechanism of the cytosolic tumor malic enzyme is similar to that for the pigeon liver cytosolic malic enzyme but different from those for the mitochondrial enzyme from various sources.  相似文献   

19.
Adrenodoxin stimulated the oxidation of NADPH by 1,4-benzoquinone, catalyzed by NADPH:adrenodoxin reductase. It prevented the enzyme inhibition by NADPH and formed an additional pathway of benzoquinone reduction presumably via reduced adrenodoxin. In the presence of 100-400 microM NADP+, which increased the Km of NADPH, adrenodoxin acted as a partial competitive inhibitor for NADPH decreasing its TN/Km by a limiting factor of 3. Ki of adrenodoxin decreased on the NADP+ concentration decrease and was estimated to be about 10(-8) M in the absence of NADP+.  相似文献   

20.
Incubation of malic enzyme (L-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) with ethoxyformic anhydride caused the time-dependent loss of its ability to catalyze reactions requiring the nucleotide cofactor NADP+ or NADPH, such as the oxidative decarboxylase, the NADP+ - stimualted oxalacetate decarboxylase, the pyruvate reductase, and the pyruvate-medium proton exchange activities. Similar loss of oxidative decarboxylase and pyruvate reductase activities was affected by photo-oxidation in the presence of rose bengal. The inactivation of oxidative decarboxylase activity by ethoxyformic anhydride was accompanied by the reaction of greater than or equal to 2.3 histidyl residues per enzyme site and was strongly inhibited by NADP+. Ethoxyformylation also impaired the ability of malic enzyme to bind NADP+ or NADPH. These results support the involvement of histidyl residue(s) at the nucleotide binding site of malic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号