首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
Ca2+ decreased the lipid fluidity of rat liver plasma membranes labeled with 5-nitroxide stearate, I(12,3), as indicated by the order parameter (S). These effects form a reversible, saturable process with an association constant of 1 x 10(3) M-1. Arrhenius-type plots of S indicated that the lipid phase separation, present in the external leaflet of native membranes between 28 and 19 degrees C, is perturbed by mM Ca2+ such that the high temperature onset is elevated to 32-34 degrees C. Fluoride-stimulated adenylate cyclase was similarly inhibited by Ca2+ (ID50 = 1 mM) for the enzyme in membrane-bound or solubilized states. The glucagon-stimulated activity was more sensitive to Ca2+ inhibition with an ID50 of 0.2 mM. These inhibitory effects are due neither to perturbations of glucagon binding to its receptor nor to fluidity changes, but are instead attributed to direct Ca2+-enzyme interactions. Such binding desensitizes the enzyme to fluidity alterations induced by temperature elevation or benzyl alcohol addition. With Ca2+, Arrhenius plots of glucagon-stimulated activity indicated breaks at 32 and 16 degrees C, whereas those of fluoride-stimulated activity showed one break at 17 degrees C. Without Ca2+, Arrhenius plots exhibited one break at 28 degrees C for glucagon-stimulated activity, whereas fluoride-stimulated plots were linear. We propose that Ca2+ achieves these effects through asymmetric perturbations of the membrane lipid structure.  相似文献   

2.
A partial characterization of bass gill (Na+ + K+-ATPase is reported in the present paper. Microsomal preparation from gill homogenate showed optimal (Na+ + K+)-ATPase activity at pH 6,5 in the presence of 100 mM Na+, 20mM K+ and 5mM Mg2+. Under these conditions maximal activity was shown at 45 degrees C, even if an increased lability of the enzyme was shown at temperature greater than 30 degrees C. A complete inhibition of the enzyme occurred in the presence of 1 mM ouabain. The break in the Arrhenius plot occurred approximatively at the temperature of adaptation of these fish (18 degrees C). The energies of activation above and below the break were scarcely different from each other and lower than those reported in other Poikilotherms. Furthermore similar values of Km for Na+ were evidenced at 18 degrees C and 30 degrees C. The whole of data are discussed in comparison with other teleost gill (Na+ + K+)-ATPase reports and related to the physiological role of the enzyme in osmoregulation.  相似文献   

3.
Membrane potentials of mouse parathyroid cells were measured by means of the intracellular microelectrode method. The membrane potential in external Krebs solution containing 2.5 mM of Ca++ was -23.6 +/- 0.4 mV (mean +/- standard error of mean). The low concentration of Ca++ (1.0 mM) caused hyperpolarization of the membrane potential to -61.7 +/- 0.8 mV. The membrane potential was proportional to the logarithm of the concentration of K ion in the solution of low Ca ion. The concentration of external Na+, C1- and HPO4-- had no effect on the membrane potential. The sigmoidal transition of membrane potentials was induced by the change of Ca ion concentration in the range from 2.5 to 1.0 mM. The change of the membrane potentials in low Ca ion is originated from increase in potassium permeability of the cell membrane. The similar sigmoidal changes of the membrane potentials were observed in the solution containing 4 to 3 mM of Sr ion. The Mg and Ba ion showed smaller effect on the membrane potential. The Goldman equation was extended to divalent ions. Appling the extended membrane potential equation, ratios of the permeability coefficients were obtained as follows: PK/PCa = 0.067 for 2.5 mM Ca++, 0.33 for 1.0 mM Ca++; PK/PSr = 0.08 for 4 mM Sr++ and 0.4 for 3 mM Sr++; PK/PMg = 0.5; PK/PBa = 0.67 for all range of concentration. The Hill constants of Sr ion and Ca ion were 20; the relationship between Sr ion and Ca ion was competitive. The Hill constants of Mg and Ba ion were 1 each. The Hill constant of Ca ion was depend of the temperature; nmax = 20 at 36 degrees C, n = 9 at 27 degrees C, n = 2 at 22 degrees C. The enthalpy of Ca-binding reaction was obtained from the Van't Hoff plot as 0.58 kcal. The activation energies of the K+ permeability increase were obtained from the Arrhenius plots as 3.3 kcal and 4 kcal. The difference, 0.7 kcal, corresponds to the enthalpy change of this reaction, of which value is close to that of the Ca-binding reaction.  相似文献   

4.
The kinetic properties of intact and digitonin-treated Na,K-ATPase from bovine brain were studied. The temperature dependence curve for the rate of ATP hydrolysis under optimal conditions (upsilon 0) in the Arrhenius plots shows a break at 19-20 degrees. The temperature dependence curves for Km' and Km" have breaks at the same temperatures, while the Arrhenius plot for V is linear. The value of the Hill coefficient (nH) for ATP at 37 degrees is variable depending on ATP concentration, i. e. it is less than 1 at ATP concentrations below 50 mkM and is increased up to 3.2 at higher concentrations of the substrate. At high ATP concentrations the value of nH depends on temperature, falling down to 2.1 at 23 degrees and then down to 1 within the temperature range of 21-19 degrees. A further decrease in temperature does not significantly affect the nH value. Digitonin irreversibly inhibits Na, K-ATPase. ATP hydrolysis is more sensitive to the effect of the detergent than is nNPP hydrolysis, i. e. after complete inhibition of the ATPase about 40% of the phosphatase activity are retained. Treatment of Na,K-ATPase by digitonin results in elimination of the breaks in the Arrhenius plots for upsilon 0, Km' and Km", whereas the temperature dependence plot of V remains linear. Simultaneously digitonin eliminates the positive cooperativity of the enzyme for ATP. It is assumed that Na, K-ATPase from bovine brain is an oligomer of the (alpha beta) 4 type. Digitonin changes the type of interaction between the protomers within the oligomeric complex by changing the lipid environment of the enzyme or the type of protein -- lipid interactions.  相似文献   

5.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

6.
The enzymatic properties of plasma membrane-bound Na+, K+-ATPase [EC 3.6.1.3], isolated with high specific activity and in good yield from pig thyroid cells, were examined. The enzyme activity required the presence of both Na+ and K+ at physiological concentrations; it exhibited high sensitivity to K+ and an absolute requirement for Na+. It showed highly specific requirement for Mg2+ and ATP. The apparent Km for ATP was 0.14 mM under the assay conditions. Arrhenius plots had a point of inflection at about 22 degrees C, activation energies being 24.2 kcal/mol at 5-22 degrees C and 19.0 kcal/mol at 22-40 degrees C. In addition to ouabain, the ATPase was strongly inhibited by fluoride and the SH-blocking reagent, PCMB. Iodide and TSH had no appreciable effect on the enzyme activity.  相似文献   

7.
A change in the environment of rat brain membranes by dialysis from phosphate buffered saline (PBS) to 10 mM potassium phosphate (pH 7.2) led to a 35% loss in delta opioid receptor binding, while alteration of membrane structure on freezing at -20 degrees C for 55 days led to 85% loss of receptor binding. The dialysate, 200 mM KCI and NaCl restored receptor binding lost on dialysis. This K+ and Na+ restabilization of the receptor can be through cation-pi bonding, interactions that are suited to the lipid bilayer. In membranes stored at -20 degrees C, the loss of binding is attributed to increased membrane fluidity by phospholipase A2 action on membrane phospholipids, resulting in an increase of free fatty acids. K+ but not Na+ restabilization of these membrane receptors may be due to the ability of K+ to decrease membrane fluidity.  相似文献   

8.
The results of histochemical and immunocytochemical studies have been used elsewhere to support the hypothesis that Na+/K(+)-ATPase expression is initiated or increases dramatically in preimplantation mouse conceptuses just before they begin to cavitate. Moreover, localization of the enzyme in the inner membrane of the mural trophoblast is thought to be involved directly in formation and maintenance of the blastocyst cavity. Presumably, Na+/K(+)-ATPase extrudes the cation, Na+, and therefore water into the cavity. The cation transporting activity of the enzyme can be determined by measuring ouabain-sensitive Rb+ uptake by cells. Therefore, we measured Rb+ uptake in mouse eggs and preimplantation conceptuses at various stages of development. 86Rb+ uptake by conceptuses increased linearly with time for at least 60 min in medium containing 0.7 mM total Rb+ plus K+ in the absence or presence of 1.0 mM ouabain, and ouabain inhibited more than 70% of 86Rb+ uptake. The ouabain concentration at 1/2 of maximum inhibition of the ouabain-sensitive component of 86Rb+ uptake was about 10-20 microM in eggs and conceptuses at all stages of preimplantation development. Moreover, ouabain-sensitive Rb+ uptake had a twofold higher Vmax value in blastocysts than in eggs or conceptuses at earlier stages of development (i.e., approximately 173 vs 70-100 fmole.conceptus-1.min-1), although the total cell surface area also was probably about two times greater in blastocysts than in eggs or other conceptuses. Ouabain-sensitive Rb+ transport in eggs and conceptuses may have occurred via a single ouabain-sensitive Rb+ transporter with a Hill coefficient of 1.5-1.8 (Hill plots). When it was assumed that the Hill coefficient had a value of 2.0, however, eggs and conceptuses appeared to contain at least two forms of Na+/K(+)-ATPase activity. These studies are the first to show that the cation transporting activity of Na+/K(+)-ATPase can be measured quantitatively in mammalian eggs and preimplantation conceptuses. Inclusion of this assay in experiments designed to determine how Na+/K(+)-ATPase activity is controlled in oocytes and conceptuses should yield further insight into the role of this enzyme in oogenesis and preimplantation development.  相似文献   

9.
A method for determining individual rate constants for nucleotide binding to and dissociation from membrane bound pig kidney Na,K-ATPase is presented. The method involves determination of the rate of relaxation when Na,K-ATPase in the presence of eosin is mixed with ADP or ATP in a stopped-flow fluorescence apparatus. It is shown that the nucleotide dependence of this rate of relaxation--taken together with measured equilibrium binding values for eosin and ADP--makes possible a reasonably reliable determination of the rate constant for dissociation of nucleotide, i.e., determination of the rate constant k-1 in the following model (where E denotes Na,K-ATPase): [formula: see text] All experiments are carried out at about 4 degrees C in a buffer containing 200 mM sucrose, 10 mM EDTA, 25 mM Tris and 73 mM NaCl (pH 7.4). Values obtained for the rate constants for dissociation are about 6 s-1 for ADP and 2-3 s-1 for ATP.  相似文献   

10.
The evoked effects of the negatively charged drugs phenobarbital and barbituric acid, the positively charged imipramine, perphenazine and trifluoperazine, and the neutral primidone, on the synaptosome-associated acetylcholinesterase activity were studied. A marked increase in the enzyme activity was exhibited in the presence of low concentrations (up to 3 mM) of phenobarbital, barbituric acid and primidone. Higher concentrations (up to 10 mM), however, led to a progressive inhibition of the enzyme activity. However, the activity of the enzyme was not affected by imipramine, but it was decreased by perphenazine and trifluoperazine. Arrhenius plots of acetylcholinesterase activity exhibited a break point at 23.4 degrees C for the untreated (control) synaptosomes, which was shifted to around 16 degrees C in the synaptosomes treated with the charged drugs. The allosteric inhibition by F- of acetylcholinesterase was studied in control synaptosomes and in those treated with the charged drugs. Changes in the Hill coefficients in combination with changes in Arrhenius activation energy produced by the charged drugs would be expected if it is assumed that charged drugs 'fluidize' the synaptosomal plasma membranes.  相似文献   

11.
Optimal binding of [2,8-3H]AdoPP[NH]P to (Na+ + K+)-ATPase requires 25 mM Na+ (Cl-), 50 mM imidazole+ (Cl-) or 50 mM Tris+ (Cl-). Chloride is essential as counterion. We conclude that imidazole+ and Tris+ are able to bind to the Na+ site, and recommend the use of dilute buffers for studying the partial reactions of (Na+ + K+)-ATPase. In NaCl or the substituting buffers the dissociation constant for the enzyme-AdoPP[NH]P complex at 0 degrees C and pH 7.25 is 0.4 microM, whereas in millimolar MgCl2 it is about 2 microM. These distinct levels in affinity with MgCl2 as compared to NaCl, together with the MgCl2-dependence of photolabelling of the enzyme with ATP analogues (Rempeters, G. and Schoner, W. (1981) Eur. J. Biochem. 121, 131-137), suggest significant changes within the substrate site of (Na+ + K+)-ATPase upon binding of Mg2+ (Cl-)2.  相似文献   

12.
6-carboxy-eosin is introduced as a sensitive, non-covalently bound fluorescent probe for monitoring conformational changes in detergent-solubilized Na,K-ATPase. The dissociation constant for 6-carboxy-eosin is about 0.1 microM in 20 mM NaCl at 6 degrees C (pH 7.0) for Na,K-ATPase solubilized in C12E8. It is shown that the slow conformational change from E2 (in K+) to E1 (in Na+) is 4-fold more rapid in the solubilized state than in the membrane-bound state, both for shark rectal gland and pig kidney Na,K-ATPase. The rate of the E1 to E2 transition is rapid and of the same order of magnitude both for the membrane-bound and the solubilized enzyme. All conformational transitions are considerably slower for pig kidney enzyme than for shark enzyme, both in the membrane-bound and in the solubilized state.  相似文献   

13.
The binding of [14C]phenobarbital into synaptosomal plasma membranes of dog brain follows a sigmoid path. The "best fit" curve of this binding is the one described by the Hill equation (r2 less than 0.93 and Hill coefficient, n = 1.32). (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities are modulated by phenobarbital. Arrhenius plots of (Na+, K+, Mg2+)-dependent ATPase revealed that phenobarbital (2 mM) lowered the transition temperature and altered the Arrhenius activation energies of this enzyme. The allosteric inhibition by F- of the (Na+, K+)-stimulated ATPase was studied in control and phenobarbital-treated membranes. The lowering of the transition temperature and changes in Arrhenius activation energy about the transition temperature in combination with changes observed in the allosteric properties of the (Na+, K+)-stimulated ATPase by F-, produced by phenobarbital, would be expected if it is assumed that phenobarbital "fluidizes" synaptosomal plasma membranes.  相似文献   

14.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

15.
In Necturus gallbladder epithelial cells the intracellular electrical potential, as recorded with microelectrodes, varied from -28 mV in the mucosal end to about -50 mV in the serosal end of the transporting cell. The Na+ activity varied concurrently from about 39 mM to between 8 and 19 mM. Thus, within the cell both the recorded electrical and chemical gradients caused Na+ to move towards the serosal end. Serosal addition of ouabain (5 X 10(-4) M) caused the intracellular Na+ activity to attain electrochemical equilibrium within 30 min. However, the intracellular electrical potential gradient was only slowly affected. In cells from animals stored at 5 degrees C, the Cl- activity varied from about 55 mM in the mucosal end to 28 mM in the serosal end, and the K+ activity from 50 mM to between 95 and 131 mM. Both ions were close to electrochemical equilibrium within the cytoplasm but were too concentrated to be in equilibrium with the mucosal solution. Bubbling CO2 through the mucosal solution caused the intracellular gradients to vanish. When Na+ in the bathing solutions was exchanged for K+, the intracellular electrical potential became roughly constant at about -5 mV. The Cl- activity became constant in 65 mM, and the K+ activity became constant at 109 mM, both close to equilibrium with the mucosal solution. The Na+ activity was reduced to about 1 mM. The ratio of cytoplasmic resistivities between cells bathed in K+-rich saline to cells bathed in Na+-rich saline was measured by means of triple-barreled electrodes and compared to the same ratio as assessed from the activity measurements. The two values were equal only if one assumes the mobility of Na+ inside the cell to be less than 1/10 of the mobility of K+ or Cl-. The same conclusion was reached by comparing the intracellular Na+ flux calculated from the gradient of electrochemical potential to that flux assess from the net solute absorption. Animals kept at 15 degrees C had lower intracellular Na+ activities, higher Cl- and K+ activities, and higher rates of absorption than animals stored at 5 degrees C. Finally, the degree to which the intracellularly recorded electrical and chemical potentials could reflect an electrode artefact is discussed.  相似文献   

16.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

17.
1. Arrhenius plots of the glucagon-stimulated adenylate cyclase, 5'-nucleotidase, (Na+ + K+)-stimulated adenosine triphosphatase and Mg2+-dependent adenosine triphosphatase activities of control hamster liver plasma membranes exhibited two break points at around 25 and 13 degrees C, whereas Arrhenius plots of their activities in hibernating hamster liver plasma membranes exhibited two break points at around 25 and 4 degrees C. 2. A single break occurring between 25 and 26 degrees C was observed in Arrhenius plots of the activities of fluoride-stimulated adenylate cyclase, basal adenylate cyclase and cyclic AMP phosphodiesterase of liver plasma membranes from both control and hibernating animals. 3. Arrhenius plots of phosphodiesterase I activity showed a single break at 13 degrees C for membranes from control animals, and a single break at around 4 degrees C for liver plasma membranes from hibernating animals. 4. The temperature at which break points occurred in Arrhenius plots of glucagon- and fluoride-stimulated adenylate cyclase activity were decreased by about 7--8 degrees C by addition of 40 mm-benzyl alcohol to the assays. 5. Discontinuities in the Arrhenius plots of 4-anilinonaphthalene-1-sulphonic acid fluorescence occurred at around 24 and 13 degrees C for liver plasma membranes from control animals, and at around 25 and 4 degrees C for membranes from hibernating animals. 6. We suggest that in hamster liver plasma membranes from control animals a lipid phase separation occurs at around 25 degrees C in the inner half of the bilayer and at around 13 degrees C in the outer half of the bilayer. On hibernation a change in bilayer asymmetry occurs, which is expressed by a decrease in the temperature at which the lipid phase separation occurs in the outer half of the bilayer to around 4 degrees C. The assumption made is that enzymes expressing both lipid phase separations penetrate both halves of the bilayer, whereas those experiencing a single break penetrate one half of the bilayer only.  相似文献   

18.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

19.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

20.
Activation of the acetylcholine receptors of cultured muscle cells by carbamylcholine increases the rate of passive 22-Na+ uptake into the muscle cells up to 20-fold. The Na+ transport activity of the receptor desensitizes during exposure to carbamylcholine. The rate and extent of desensitization is reduced by lowering the assay temperature from 36 degrees to 2 degrees, allowing accurate measurements of initial rates of Na+ transport by the receptor. Activation of the receptor by carbamylcholine and acetylcholine is significantly cooperative (Hill coefficients of 1.4 to 2.0). Inhibition by D-tubocurarine is not cooperative. The carbamylcholine-induced Na+ transport activity of the receptor is inhibited 50% by 4 muM D-tubocurarine, 100 muM atropine, or 1.6 nM diiodo-alpha-bungarotoxin but is not affected by tetrodotoxin. The initial rate of Na+ transport by the receptor is temperature-independent between 2 degrees and 36 degrees. Receptor Na+ transport is saturable by Na+ at 2 degrees with an apparent Km of 150 plus and minus 20 mM. Saturation by Na+ not observed at 36 degrees at the concentrations tested. Saturation by Na+ is observed at 2 degrees both under conditions of net Na+ influx and under conditions of isotopic exchange at equilibrium. The receptor does not catalyze obligatory exchange diffusion at a detectable rate. Comparison of binding of [125-I]diiodo-alpha-bungarotoxin with rates of Na+ transport indicates a turnover number of 2 times 10-7 ions per min per receptor. These results are discussed in terms of the mechanism of Na+ transport by the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号