首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide of Fusobacterium nucleatum strain Fevl was split by acid hydrolysis. The split products, i.e. lipid A and degraded polysaccharide were mitogenic for murine spleen cells as measured by uptake of [3H]thymidine. The uptake of [3H]thymidine was dose-dependent. Incubation of spleen cells with stimulants for 3 days resulted in a polyclonal activation of immunoglobulin synthesis. Higher mitogenic response and immunoglobulin production were found in spleen cells of athymic mice compared to those of thymic mice. The activity of lipid A in stimulating immunoglobulin synthesis was comparable with the parent lipopolysaccharide-Fevl, the degraded polysaccharide being the less potent stimulator.  相似文献   

2.
Abstract. About twice as much tritiated thymidine ([3H]TdR) is taken up by cells at the bottom of the crypt of the small intestine as by the rapidly cycling mid-crypt cells. However, the uptake of tritiated deoxyuridine ([3H]UdR) is even throughout the crypt.
Exogenous thymidine is incorporated about four times and eight times more efficiently than deoxyuridine by the cells in the mid-crypt and cells at the bottom of the crypt, respectively. However all S phase cells in the crypt appear to be capable of using either precursors, i.e. either the de novo or salvage pathway.
Since methotrexate (1 or 5 mg/kg) inhibits (at 5 mg/kg completely) the uptake of [3H]UdR, but has no effect on [3H]TdR uptake, the de novo and salvage pathways appear to be independent. Within the precision of the methods used in the experiments the 3 hr inhibition of the de novo pathway of deoxythymidylic acid (dTMP) synthesis by methotrexate does not produce any increase in utilization of the salvage pathway measured by incorporation of [3H]TdR into DNA. the increased efficiency of thymidine utilization by crypt base cells is not attributable to (i) differences in accessibility of thymidine; (ii) differences in the rate of DNA synthesis or (iii) the size of the nuclei.  相似文献   

3.
Abstract: The development of the thymidine phosphorylating systems was studied in various regions of brain. Brain slices from cerebellum, brain stem, and forebrain of rabbits 2, 7, 14, 30, 90, 500, and 2500 days of age were incubated for various times in artificial CSF containing 3 nM-[3H]thymidine at 37°C under 95% O2-5% CO2. When slices from all brain regions of 2-day-old rabbits were incubated in [3H]thymidine for 30 min, tissue-to-medium ratios of 3H were between 2 and 4 and declined with age, and the percentages of the total 3H in perchloric acid homogenates of brain slices as [3H]DNA were 26–29%, declining to low levels with age. However, at all ages and in all regions studied, 41 -88% of the 3H within the slices was phosphorylated. After homogenization and subcellular fractionation of the brain slices incubated in [3H]thymidine for 30 min, the highest percentage of [3H]thymidine phosphates plus [3H]DNA was present in the nuclear (crude and purified) and mitochondrial fractions of all brain regions. The [3H]DNA content in the nuclear and mitochondrial fractions declined with age, but the percentage of [3H]thymidine phosphates did not. Thymidine phosphates were synthesized from thymidine in all brain regions tested throughout the entire life span.  相似文献   

4.
Abstract. [3H]Thymidine has been extensively used as a selective precursor to DNA in studies on the kinetics of cell proliferation. We have become interested in measuring early inhibition of the DNA synthesis in various organs of intact animals for detecting genotoxic properties of chemicals. Such experiments should, for convenience and to achieve a large capacity, be performed in the simplest way possible.
The present paper deals with some practical aspects on the use of [3H]thymidine in vivo. [6-3H]Thymidine was injected intraperitoneally in mice and the uptake of radioactivity was evaluated by using whole-body autoradiography and liquid scintillation spectrometry. Autoradiograms of sections washed with trichloroacetic acid and methanol Were compared with those subjected only to freeze-drying. Liquid scintillation counting was performed of total, non-volatile, acid-insoluble and dNA-associated radioactivities. A rapid increase of the [3H]thymidine incorporation was seen during the first hour after the injection. Further prolongation of the survival time did not result in any significant increase of the incorporated radioactivity. Moreover, there were only slight differences between the autoradiograms from extracted and non-extracted sections. Radioactivities asśociated with DNA closely eorrelated to those representing acid-insoluble material, indicating that acid-insoluble radioactivity provides a good estimate of the [3H]thymidine incorporation into DNA.  相似文献   

5.
Abstract. We have studied carcinoma NT, a transplantable mouse adenocarcinoma of spontaneous origin. Cells labelled with [3H]thymidine ([3H]TdR) were restricted to a narrow zone around the periphery of this tumour and were also found in rings up to 50 μ m wide, around isolated blood vessels in the central necrotic area. Labelling with [3H]deoxyuridine ([3H]UdR), another DNA synthesis precursor, produced a very different pattern. The labelled zone around the periphery was much wider than with [3H]TdR, and [3H]UdR labelled cells were found up to 110 μ m from isolated vessels. [3H]iododeoxyuridine ([3H]IUdR) gave the same pattern of labelling as [3H]UdR. In the heavily labelled zone, within 1 mm of the tumour periphery, the labelling index (LI) was 51% after [3H]UdR or [3H]IUdR injection, and only 36% with [3H]TdR.
The data show that at least half of the DNA-synthesizing cells in this tumour did not incorporate [3H]TdR. Previous workers reported cell loss factors for carcinoma NT of 60% calculated from [3H]TdR labelling data and 30% from the rate of loss of [125I]UdR. The present work suggests that calculations based on [125I]UdR data are more likely to be accurate for carcinoma NT than those using [3H]TdR data.  相似文献   

6.
Abstract. A method is described for the isolation of enriched populations of crypt cells from the murine small intestine. The method was developed to study the response of cells to various stimuli in vitro . The properties of the isolated cell preparations varied with the state of the intestinal mucosa of the mice from which they were isolated. Thus we could distinguish between cells from lactating and non-lactating mice. Polyamines, which are putative modulators of crypt cell division, failed to stimulate [3H]TdR incorporation in vitro . Lymphocyte culture supernatants suppressed [3H]TdR incorporation at dilutions of 1:4 to 1:64. Supernatants of 12- O -tetradecanoylphorbol-13-acetate-stimulated EL-4 cells and of mixed lymphocyte cultures failed to stimulate [3H]TdR incorporation of any dilution. Supernatants of concanavalin A-stimulated spleen cells gave less suppression of [3H]TdR incorporation than those of unstimulated spleen cells and stimulated incorporation at dilutions of 1:64 and 1:128. Phytohaemagglutinin stimulated [3H]TdR incorporation at high concentrations, whereas concanavalin A (con A) had no effect. This study shows that the isolated murine crypt cells may have the potential to provide a useful in vitro model for crypt cell responses to stimuli.  相似文献   

7.
Abstract We have recently demonstrated that the calmodulin antagonist trifluoperazine has antitubercular activity in vitro against Mycobacterium tuberculosis H37Rv susceptible and resistant to isoniazid. It is shown that trifluoperazine at a concentration of 50 μ g ml−1 when added to the cells along with the labelled precursors inhibited the incorporation of [14C]acetate into lipids (63%) and uptake of [14C]glycine (74%) and [3H]thymidine (52%) bu whole cells of M. tuberculosis H37Rv by 6 h of exposure. After 48 h, the inhibition was 87%, 97% and 74%, respectively. However, when the drug was added to cells taking up and metabolizing the labelled precursors at a later point (3 h for [14C]acetate and [3H]thymidine and 12 h for [14C]glycine) it inhibited completely the uptake of all the precursors, at least up to 24 h. The onset of inhibitory action was very rapid, i.e. 3 h. It is suggested that trifluoperazine has multiple sites of action and acts probably by affecting the synthesis of lipids, proteins and DNA.  相似文献   

8.
Abstract: The localization and mechanism of thymidine and deoxyuridine transport in the central nervous system were studied in vivo and in vitro . Previous studies have shown that thymidine enters brain from blood in part via the CSF. In vitro , isolated adult bovine cerebral microvessels, which readily concentrated and phosphorylated deoxyglucose, were unable to concentrate thymidine and deoxyuridine. In vivo , [3H]thymidine (0.2 μ M ) and [3H]deoxyuridine(0.4 μ M ) were not extracted more readily than [14C]sucrose in a single pass through the cerebral circulation of rats. In vivo , [3H]thyrnidine retention in CSF and brain after entry from blood was increased when the efflux of [3H]thymidine from CSF and the phosphorylation of [3H]thymidine in brain were depressed by the intraventricular injection of unlabeled thymidine. These studies and previous work suggest that the transfer of thymidine (and deoxyuridine) through the blood-brain barrier in either direction must be extremely low. The present studies are consistent with the postulate that thymidine is transported by an active transport system in the choroid plexus that transfers thymidine from blood into the CSF; from the CSF, the thymidine enters brain cells and is phosphorylated.  相似文献   

9.
Abstract: Arachidonic acid (AA) markedly stimulated, in a dose-dependent manner, the spontaneous release of [3H]dopamine ([3H]DA) continuously synthesized from [3H]tyrosine in purified synaptosomes from the rat striatum. As estimated by simultaneous measurement of the rate of [3H]H2O formation (an index of [3H]tyrosine conversion into [3H]DOPA), the AA response was associated with a progressive and dose-dependent reduction of [3H]DA synthesis. In contrast to AA, arachidic acid, oleic acid, and the methyl ester of AA (all at 10−4 M ) did not modify [3H]DA release. The AA (3 × 10−5 M )-evoked release of [3H]DA was not affected by inhibiting AA metabolism, with either 5,8,11,14-eicosatetraynoic acid or metyrapone, suggesting that AA acts directly and not through one of its metabolites. AA also inhibited in a dose-dependent manner [3H]DA uptake into synaptosomes, with a complete blockade observed at 10−4 M . However, AA (10−4 M ) still stimulated [3H]DA spontaneous release in the presence of either nomifensine or other DA uptake inhibitors, indicating that AA both inhibits DA reuptake and facilitates its release process. Finally, the AA (10−4 M )-evoked release of [3H]DA was not affected by protein kinase A inhibitors (H-89 or Rp -8-Br-cAMPS) but was markedly reduced in the presence of protein kinase C inhibitors (Ro 31-7549 or chelerythrine).  相似文献   

10.
Abstract: [3H] γ -Aminobutyric acid ([3H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3H]GABA uptake into synaptosomes isolated from rat whole brains. [3H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end.  相似文献   

11.
Metabolism of Deoxyuridine in Rabbit Brain   总被引:1,自引:2,他引:1  
Abstract: The metabolism of [3H]deoxyuridine by rabbit brain was investigated in vitro and in vivo . In vitro , brain slices from various regions of brain and from all age groups accumulated [3H]deoxyuridine from artificial CSF. Within the slices, a portion of the accumulated [3H]deoxyuridine was metabolized to [3H]deoxyuridine phosphate, with subsequent conversion to [3H]thymidine phosphate, and ultimately [3H]DNA. The percentage of the [3H]deoxyuridine phosphorylated and subsequently converted into [3H]DNA was highest at birth and declined to adult levels in 3-month-old rabbits. Thymidine, when added to the incubation medium with the [3H]deoxyuridine, was approximately 10 times as potent as unlabeled deoxyuridine in inhibiting the intracellular phosphorylation and conversion of [3H]deoxyuridine to [3H]thymidine phosphate in brain slices. In vivo , 2.5 h after intraventricular injection of [3H]deoxyuridine, over 90% of the [3H]deoxyuridine was cleared from the central nervous system at all ages. However, in both newborn and 3-month-old rabbits, approximately 40 and 12%, respectively, of the 3H remaining in brain was phosphorylated and converted to [3H]thymidine phosphates; and 11 and 4%, respectively, of the 3H remaining in brain was converted to [3H]DNA. These results show that both immature and mature rabbit brain is able to incorporate deoxyuridine into DNA. Thus, all the enzymes involved in this conversion, including thymidylate synthetase (EC 2.1.1.45), are present and active in brain throughout life.  相似文献   

12.
Abstract The effect of cortisol on the proliferation of the rainbow trout fibroblast cell line, RTG-2, was examined in synchronous and asynchronous cultures. When the transition from G1 to S was synchronized by restoring serum to serum-deprived cultures, the addition of cortisol at the time of serum restoration delayed the entry of cells into S phase. However, if cortisol was added 24 h after serum restoration, at the G1/S transition point, the subsequent peak of DNA synthesis was unaffected. In asynchronous cultures cortisol inhibited [3H]-thymidine and [3H]-uridine but not [3H]-leucine incorporation into acid-insoluble material. If the exogenous nucleoside concentration was raised, [3H]-thymidine but not [3H]-uridine incorporation continued to be inhibited by cortisol. This suggested that cortisol's effect on [3H]-thymidine incorporation reflected a change in entry into S phase and not just on thymidine uptake and metabolism. Cortisol inhibited the proliferation of RTG-2 in asynchronous cultures. At 1000 ng/ml of cortisol a reduction in cell number became apparent before the RTG-2 cultures were confluent, whereas at 100 ng/ml the reduction only became evident in confluent cultures. The synthetic antiglucocorticoid, RU 486, which acts at the level of the corticosteroid receptor, blocked the growth inhibition by cortisol. These results suggest that cortisol regulates rainbow trout fibroblast proliferation via the corticosteroid receptor and that the G1/S transition is one point at which this regulation occurs.  相似文献   

13.
Abstract. Thymidine (TdR) and its analogue, iododeoxyuridine (IdUdr), were used to quantitate nucleoside re-utilisation in vivo. Significantly different results are obtained, however, depending upon what form of isotopically labelled iododeoxyuridine is used. No measurable local thymidine re-utilization was found in mouse thymus, spleen or bone marrow when the retention of [3H]IdUdR was compared with [14C]TdR. On the other hand, significant differences were found between the retention of [125I]IdUdR and [3H]IdUdR, which is attributed to de-iodination of iododeoxyuridine. Some thymidine re-utilization was found in duodenum using both [3H]IdUdR and [125I]IdUdR. Information on the in vivo distribution of TdR and the contention that a large degree of TdR re-utilization in the thymus is evidence of extensive cell death must be re-interpreted in the light of these results. In addition, evidence for little or no local re-utilization in some tissues will greatly simplify the use of [11C]TdR as an imaging agent for measuring tissue proliferation in vivo with positron emission tomography (PET).  相似文献   

14.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

15.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

16.
Abstract. DNA synthesis in rat hepatocytes, from livers regenerating after 70% hepatectomy, was assessed by flow cytometric determination of nuclear DNA content and by incorporation of [3H]thymidine. Parenchymal liver cells were isolated by collagenase perfusion and low-speed centrifugation. Nuclei from the isolated cells were prepared for flow cytometry by a treatment with detergent, pepsin and RNase, and stained with ethidium bromide. Parallel samples of cells were incubated with [3H]thymidine and analysed for rate of incorporation of radioactivity into DNA and for labelling index determination.
The flow cytometric measure of the replicative response, i.e. the presence of cells with S-phase DNA content within the diploid and tetraploid cell populations, was compared with the incorporation of [3H]thymidine. For each of fourteen animals, including two control rats and twelve partially hepatectomized animals killed either before (at 13 hr after hepatectomy), at the onset (16 and 18 hr) or at the peak (24 hr) of regenerating activity, a fairly good correlation was found between the different methods. Satisfactory resolution of the flow cytometric detection of S-phase cells was indicated by a sorting experiment using an Ortho (system 50-H) cell sorter which demonstrated that after [3H]thymidine injection in vivo 88% of the diploid and 84% of the tetraploid S-phase nuclei were labelled, while labelling in the G1-fractions was only 2 and 7%, respectively.  相似文献   

17.
SYNOPSIS. Experiments were designed to investigate the effects of insect juvenile hormone (JH) on the over-all growth and macromolecular synthesis of Crithidia sp. in vitro. Cells grown in the presence of 10−5M-10−3M JH showed a concentration-dependent inhibition of growth, which appeared to result from both a prolongation of generation time and a delay in the onset of logarithmic growth. Juvenile hormone (10−3M) inhibited the incorporation of [3H]thymidine, [3H]uridine and [3H] leucine into logarithmically growing cells by 50, 70 and 40% respectively. The incorporation of [3H]uridine into acid insoluble material could be stopped within 1 hr of application of the hormone (10−3M). The inhibitory effect was reversible in terms of cell numbers in subcultures of washed cells but an examination of the reversibility of RNA synthesis inhibition suggested that the resumption of RNA synthesis at an optimal level would require a lag period of at least 1–3 hr. It is suggested that JH may act by interfering with RNA synthesis either directly or indirectly by primarily acting at the level of the plasma membrane.  相似文献   

18.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

19.
Abstract. DNA labelling by [3H]thymidine and the sandwich radioimmunolabelling method were used to characterize marrow lymphoid cells and to study the kinetics of production and maturation of small lymphocytes in the bone marrow of adult mice. Marrow lymphoid cells consisted of non-proliferating small lymphocytes, 30–40% of which had detectable surface immunoglobulin (SmIg), and proliferating large lymphoid cells lacking SmIg. Double-labelling experiments employing [3H]thymidine in vivo followed by sandwich radioimmunolabelling in vitro indicated that marrow small lymophocytes lack detectable SmIg when they are formed but develop SmIg within the first few days after production. Marrow lymphocytopoiesis includes; (1) praliferation of large lymphoid cells, which are presumptive small lymphocyte progenitors, which have a cell cycle time of 14–15 hr, and (2) a 3–5-day intramyeloid stage when many newly formed small lymphocytes undergo maturational changes towards the B cell lineage.  相似文献   

20.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号