首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.  相似文献   

2.
Many gram-negative pathogens use a type IV secretion system (T4SS) to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.  相似文献   

3.
The Dot/Icm type IV secretion system of Legionella pneumophila translocates numerous bacterial effectors into the host cell and is essential for bacterial proliferation within macrophages and protozoa. We have recently shown that L. pneumophila strain AA100/130b harbours 11 genes encoding eukaryotic-like ankyrin (Ank) proteins, a family of proteins involved in various essential eukaryotic cellular processes. In contrast to most Dot/Icm-exported substrates, which have little or no detectable role in intracellular proliferation, a mutation in ankB results in a severe growth defect in intracellular replication within human monocyte-derived macrophages (hMDMs), U937 macrophages and Acanthamoeba polyphaga. Single cell analyses of coinfections of hMDMs have shown that the intracellular growth defect of the ankB mutant is totally rescued in cis within communal phagosomes harbouring the wild type strain. Interestingly, distinct from dot/icm structural mutants, the ankB mutant is also rescued in trans within cells harbouring the wild type strain in a different phagosome, indicating that AnkB is a trans-acting secreted effector. Using adenylate cyclase fusions to AnkB, we show that AnkB is translocated into the host cell via the Dot/Icm secretion system in an IcmSW-dependent manner and that the last three C-terminal amino acid residues are essential for translocation. Distinct from the dot/icm structural mutants, the ankB mutant-containing phagosomes exclude late endosomal and lysosomal markers and their phagosomes are remodelled by the rough endoplasmic reticulum. We show that at the postexponential phase of growth, the LetA/S and PmrA/B Two Component Systems confer a positive regulation on expression of the ankB gene, whereas RpoS, LetE and RelA suppress its expression. Our data show that the eukaryotic-like AnkB protein is a Dot/Icm-exported effector that plays a major role in intracellular replication of L. pneumophila within macrophages and protozoa, and its expression is temporally controlled by regulators of the postexponential phase of growth.  相似文献   

4.
The twin-arginine translocation (Tat) pathway translocates folded proteins across the cytoplasmic membrane. Proteins transported through this secretion system typically carry two arginine residues in their signal peptide that is cleaved off during translocation. Recently, we demonstrated the presence of the Tat pathway in Legionella pneumophila Philadelphia-1 and the Rieske Fe/S protein PetA was one of the predicted Tat substrates. Because we observed that the signal peptide of PetA is not processed and that this protein is still membrane associated in the tat mutants, correct membrane insertion was assayed using a trypsin sensitivity assay. We conclude that the Tat pathway is necessary for correct membrane insertion of L. pneumophila PetA.  相似文献   

5.
H Nagai  C R Roy 《The EMBO journal》2001,20(21):5962-5970
Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted DotA protein was purified and N-terminal sequencing of the purified protein revealed that a 19 amino acid leader peptide is removed from DotA prior to secretion. Extracellular DotA protein did not fractionate in membrane vesicles. Structures containing secreted DotA protein were visualized by electron microscopy and were shaped like hollow rings. These data indicate that the large poly topic membrane protein DotA is secreted from L.pneumophila by a unique process. This represents the first target secreted by the dot/icm-encoded apparatus and demonstrates that this transporter is competent for protein secretion.  相似文献   

6.
The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation.  相似文献   

7.
Type IV secretion systems (T4SS) are utilized by a wide range of Gram negative bacteria to deliver protein and DNA substrates to recipient cells. The best characterized T4SS are the type IVA systems, which exhibit extensive similarity to the Agrobacterium VirB T4SS. In contrast, type IVB secretion systems share almost no sequence homology to the type IVA systems, are composed of approximately twice as many proteins, and remain largely uncharacterized. Type IVB systems include the Dot/Icm systems found in the pathogens Legionella and Coxiella and the conjugative apparatus of IncI plasmids. Here we report the first extensive characterization of a type IVB system, the Legionella Dot/Icm secretion apparatus. Based on biochemical and genetic analysis, we discerned the existence of a critical five-protein subassembly that spans both bacterial membranes and comprises the core of the secretion complex. This transmembrane connection is mediated by protein dimer pairs consisting of two inner membrane proteins, DotF and DotG, which are able to independently associate with DotH/DotC/DotD in the outer membrane. The Legionella core subcomplex appears to be functionally analogous to the Agrobacterium VirB7-10 subcomplex, suggesting a remarkable conservation of the core subassembly in these evolutionarily distant type IV secretion machines.  相似文献   

8.
The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.  相似文献   

9.
Type-IV secretion systems are devices present in a wide range of bacteria (including bacterial pathogens) that deliver macromolecules (proteins and single-strand-DNA) across kingdom barriers (as well as between bacteria and into the surroundings). The type-IV secretion systems were divided into two subgroups and Legionella pneumophila and Coxiella burnetii are the only two bacteria known today to utilize a type-IVB secretion system for pathogenesis. In this review we summarized the available information concerning the icm/dot type-IVB secretion systems by comparing the two bacteria that possess this system, the proteins components of their systems as well as the homology of proteins from type-IVB secretion systems to proteins from type-IVA secretion systems. In addition, the phenotypes associated with mutants in the L. pneumophila icm/dot genes, their relations to properties of specific Icm/Dot proteins as well as the protein substrates delivered by this system are described.  相似文献   

10.
Zhu W  Banga S  Tan Y  Zheng C  Stephenson R  Gately J  Luo ZQ 《PloS one》2011,6(3):e17638
A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.  相似文献   

11.
SecA contains two ATPase folds (NBF1 and NBF2) and other interaction/regulatory domains, all of which are connected by a long helical scaffold domain (HSD) running along the molecule. Here we identified a functionally important and spatially adjacent pair of SecA residues, Arg-642 on HSD and Glu-400 on NBF1. A charge-reversing substitution at either position as well as disulfide tethering of these positions inactivated the translocation activity. Interestingly, however, the translocation-inactive SecA variants fully retained the ability to up-regulate the ATPase in response to a preprotein and the SecYEG translocon. The translocation defect was suppressible by second site alterations at the hinge-forming boundary of NBF2 and HSD. Based on these results, we propose that the motor function of SecA is realized by ligand-activated ATPase engine and its HSD-mediated conversion into the mechanical work of preprotein translocation.  相似文献   

12.
Lysoplasmalogenase catalyzes hydrolytic cleavage of the vinyl-ether bond of lysoplasmalogen to yield fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. We recently purified lysoplasmalogenase from rat liver microsomes and identified the protein as TMEM86B, an integral membrane protein that is a member of the YhhN family found in numerous species of eukaryotes and bacteria. To test the hypothesis that bacterial YhhN proteins also function as lysoplasmalogenase enzymes, we cloned the Lpg1991 gene of Legionella pneumophila, which encodes a 216 amino acid YhhN protein (LpYhhN), and expressed it in Escherichia coli as a C-terminal-GFP-His8-fusion. Membranes were solubilized and the fusion protein was purified by nickel-affinity chromatography, cleaved with Tobacco Etch Virus protease, and subjected to a reverse nickel column to purify the un-tagged LpYhhN. Both the fusion protein and un-tagged LpYhhN exhibit robust lysoplasmalogenase activity, cleaving the vinyl-ether bond of lysoplasmalogen with a Vmax of 12 µmol/min/mg protein and a Km of 45 μM. LpYhhN has no activity on diradyl plasmalogen, 1-alkenyl-glycerol, and monoacylglycerophospho-ethanolamine or monoacylglycerophospho-choline; the pH optimum is 6.5–7.0. These properties are very similar to mammalian TMEM86B. Sequence analysis suggests that YhhN proteins contain eight transmembrane helices, an N-in/C-in topology, and about 5 highly conserved amino acid residues that may form an active site. This work is the first to demonstrate a function for a bacterial YhhN protein, as a vinyl ether bond hydrolase specific for lysoplasmalogen. Since L. pneumophila does not contain endogenous plasmalogens, we hypothesize that LpYhhN may serve to protect the bacterium from lysis by lysoplasmalogen derived from plasmalogens of the host.  相似文献   

13.
The lly locus confers fluorescence, haemolysis, brown pigmentation and an increased resistance to light in Legionella pneumophila. In this study, we correlated the pigment production of two lly-positive L. pneumophila isolates and a recombinant lly-positive Escherichia coli strain with the presence of homogentisic acid (HGA) in the culture supernatant. The detection of HGA by high performance liquid chromatography and the data analysis of the deduced amino acid sequence of the lly gene indicate that the lly locus codes for a p-hydroxyphenylpyruvate dioxygenase (HPPD). This enzyme catalyses the transformation of p-hydroxyphenylpyruvate into HGA, which subsequently oxidises and polymerises into a melanin-like pigment. One open reading frame (ORF 1) in the lly region exhibited homologies with genes of Synechocystis sp., Petroselium crispum and Streptomyces mycarofaciens that code for methyltransferases. By screening a genomic library of L. pneumophila (serogroup 1) strain Corby with a monoclonal antibody against the legiolysin (lly), we identified two recombinant E. coli clones that did not produce the brown pigment and showed no haemolysis and fluorescence. DNA sequencing revealed that both clones contained 874 nucleotides of the N-terminal part of the lly gene. The recombinant strains expressed truncated legiolysin proteins of 39.5 and 35.7 kDa and did not produce HGA. Considering the highly conserved structure of legiolysin-like HPPD genes from other organisms, we suggest that the C-terminus of the legiolysin may be essential for the enzymatic activity that conferred pigmentation via HGA polymerisation, haemolysis and fluorescence.  相似文献   

14.
Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella‐containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non‐eukaryotic s oluble N SF a ttachment protein re ceptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc‐SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa‐, Qb‐ and R‐SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi‐associated pathways.  相似文献   

15.
Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill‐defined due to the lack of functional studies. In this study, we show that the rhoptry‐associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post‐invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra‐erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite–host cell interface are not simply by‐products of the invasion process but contribute to the growth of Plasmodium in vivo.  相似文献   

16.
Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex.  相似文献   

17.
The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB–tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB–tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB–tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.  相似文献   

18.
Legionella pneumophila establishes a replication vacuole within phagocytes that requires the bacterial Dot/Icm apparatus for its formation. This apparatus is predicted to translocate effectors into host cells. We hypothesized that some translocated proteins also function to maintain the integrity of the Dot/Icm translocator. Mutations that destroy this function are predicted to result in a Dot/Icm complex that poisons the bacterium, resulting in reduced viability. To identify such mutants, strains were isolated (called lid-) that showed reduced viability on bacteriological medium in the presence of an intact Dot/Icm apparatus, but which had high viability in the absence of the translocator. Several such mutants were analysed in detail to identify candidate strains that may have lost the ability to synthesize a translocated substrate of Dot/Icm. Two such strains had mutations in the lidA gene. The LidA protein exhibits properties expected for a translocated substrate of Dot/Icm that is important for maintenance of bacterial cell integrity: it associates with the phagosomal surface, promotes replication vacuole formation, and is important for both efficient intracellular growth and high viability on bacteriological media after introduction of a plasmid that allows high level expression of the dotA gene.  相似文献   

19.
R-Ras2/TC21 is a GTPase with high sequence and signaling similarity with Ras subfamily members. Although it has been extensively studied using overexpression studies in cell lines, its physiological role remains poorly characterized. Here we used RRas2-knockout mice expressing β-galactosidase under the regulation of the endogenous RRas2 promoter to investigate the function of this GTPase in vivo. Despite its expression in tissues critical for organismal viability, RRas2(-/-) mice show no major alterations in viability, growth rates, cardiovascular parameters, or fertility. By contrast, they display a marked and specific defect in the development of the mammary gland during puberty. In the absence of R-Ras2/TC21, this gland forms reduced numbers of terminal end buds (TEBs) and ductal branches, leading to a temporal delay in the extension and arborization of the gland tree in mammary fat pads. This phenotype is linked to cell-autonomous proliferative defects of epithelial cells present in TEBs. These cells also show reduced Erk activation but wild type-like levels of phosphorylated Akt. Using compound RRas2-, HRas-, and NRas-knockout mice, we demonstrate that these GTPases act in a nonsynergistic and nonadditive manner during this morphogenic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号