共查询到2条相似文献,搜索用时 0 毫秒
1.
We construct Bayesian methods for semiparametric modeling of a monotonic regression function when the predictors are measured with classical error. Berkson error, or a mixture of the two. Such methods require a distribution for the unobserved (latent) predictor, a distribution we also model semiparametrically. Such combinations of semiparametric methods for the dose response as well as the latent variable distribution have not been considered in the measurement error literature for any form of measurement error. In addition, our methods represent a new approach to those problems where the measurement error combines Berkson and classical components. While the methods are general, we develop them around a specific application, namely, the study of thyroid disease in relation to radiation fallout from the Nevada test site. We use this data to illustrate our methods, which suggest a point estimate (posterior mean) of relative risk at high doses nearly double that of previous analyses but that also suggest much greater uncertainty in the relative risk. 相似文献
2.
Joint model for left‐censored longitudinal data,recurrent events and terminal event: Predictive abilities of tumor burden for cancer evolution with application to the FFCD 2000–05 trial 下载免费PDF全文
Agnieszka Król Loïc Ferrer Jean‐Pierre Pignon Cécile Proust‐Lima Michel Ducreux Olivier Bouché Stefan Michiels Virginie Rondeau 《Biometrics》2016,72(3):907-916