首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbage yield of alfalfa (Medicago sativa L.) depends on forage management or environmental conditions that change C and N resource acquisition, and endogenous plants factors such as root organic reserves and number of active meristems. The aim of this work is to study the influence of two sowing dates in summer (12 July or 9 August), N fertilization (0 or 100 kg ha(-1)) and/or irrigation applied during the first year of alfalfa establishment on (i) the accumulation of N organic reserves (soluble proteins and more specifically vegetative storage protein) in taproots during autumn, (ii) the number of crown axillary meristems present at the end of winter and (iii) the dynamics of spring shoot growth. Delaying the sowing date for one month reduced root growth and root N storage, especially vegetative storage proteins (VSP) during autumn. Irrespective of sowing dates, N fertilization did not affect root biomass, number of crown buds, total root N, root soluble protein or VSP concentrations. By contrast, water deficiency during alfalfa establishment in the early summer reduced both root growth and N reserve accumulation. When spring growth resumed, there is a significant linear relationship between leaf area development and soluble protein and VSP concentrations in taproots, and also the number of crown buds. The results showed that an early sowing date and adequate water status during the summer allowed alfalfa plants to accumulate N reserves by increasing taproot mass and soluble protein concentrations, especially VSPs. This resulted in rapid shoot regrowth rates the following spring.  相似文献   

2.
Changes in Fatty acids of alfalfa roots during cold hardening   总被引:5,自引:3,他引:5       下载免费PDF全文
The fatty acid composition of nonhardy Caliverde and hardy Vernal alfalfa roots as a function of the hardening process was determined by gas-liquid chromatography.  相似文献   

3.
4.
5.
The effect of cold hardening on the accumulation of glutathione (GSH) and its precursors was studied in the shoots and roots of wheat (Triticum aestivum L.) cv. Cheyenne (Ch, frost-tolerant) and cv. Chinese Spring (CS, moderately frost-sensitive), in a T. spelta L. accession (Tsp, frost-sensitive) and in chro- mosome substitution lines CS (Ch 5A) and CS (Tsp 5A). The fast induction of total glutathione accumulation was detected during the first 3 d of hardening in the shoots, especially in the frost-tolerant Ch and CS (Ch 5A). This observation was corroborated by the study of de novo GSH synthesis using [35S]sulfate. In Ch and CS (Ch 5A) the total cysteine, γ-glutamylcysteine (precursors of GSH), hydroxymethylglutathione and GSH contents were greater during the 51-d treatment than in the sensitive genotypes. After 35 d hardening, when the maximum frost tolerance was observed, greater ratios of reduced to oxidised hydroxymethylglutathione and glutathione were detected in Ch and CS (Ch 5A) compared to the sensitive genotypes. A correspondingly greater glutathione reductase (EC 1.6.4.2) activity was also found in Ch and CS (Ch 5A). It can be assumed that chromosome 5A of wheat has an influence on GSH accumulation and on the ratio of reduced to oxidised glutathione as part of a complex regulatory function during hardening. Consequently, GSH may contribute to the enhancement of frost tolerance in wheat. Received: 24 March 1999 / Accepted: 19 July 1999  相似文献   

6.
Molecular investigation of the process of cold acclimation in woody plants has been limited by the superimposition of dormancy-related events on the process of cold tolerance development. To address this limitation, we have used the grape Vitis labruscana L. ev. Concord to develop a system in which the developmental programme of dormancy can be induced seperately from cold acclimation. Using this system we have characterized differential accumulation of several proteins in grape buds during the normally superimposed endodormancy and cold acclimation programmes, and in buds which have entered only the endodormancy programme. A set of 47 kD proteins accumulated during endodormancy without cold acclimation to a level similar to that found in endodormant and cold-acclimated buds, but without any associated increase in bud cold-acclimation level. However, a 27 kD LEA-like protein accumulated only in cold acclimated buds. We conclude that expression of the 47 kD glycoprotein is endodormancy-related, but is not strictly related to the development of cold acclimation, while the 27 kD protein appears to be more specific to cold acclimation. In addition to strengthening the association of LEA-like proteins with cold acclimation, this system allows more specific assessment of cold acclimation-associated phenomena in overwintering buds.  相似文献   

7.
8.
9.
10.
The effect of light on gene expression and hormonal status during the development of freezing tolerance was studied in winter wheat (Triticum aestivum var. Mv Emese) and in the spring wheat variety Nadro. Ten-day-old plants (3-leaf stage) were cold hardened at 5°C for 12 days under either normal (250 μmol m(-2) s(-1) ) or low (20 μmol m(-2) s(-1) ) light conditions. Comprehensive analysis was carried out to explore the background of frost tolerance and the differences between these wheat varieties. Global genome analysis was performed, enquiring about the details of the cold signaling pathways. The expression level of a large number of genes is affected by light, and this effect may differ in different wheat genotypes. Photosynthesis-related processes probably play a key role in the enhancement of freezing tolerance; however, there are several other genes whose induction is light-dependent, so either there is cross-talk between signaling of chloroplast originating and other protective mechanisms or there are other light sensors that transduce signals to the components responsible for stress tolerance. Changes in the level of both plant hormones (indole-3-acetic acid, cytokinins, nitric oxide and ethylene precursor 1-aminocyclopropane-1-carboxylic acid) and other stress-related protective substances (proline, phenolics) were investigated during the phases of the hardening period. Hormonal levels were also affected by light and their dynamics indicate that wheat plants try to keep growing during the cold-hardening period. The data from this experiment may provide a new insight into the cross talk between cold and light signaling in wheat.  相似文献   

11.
Soybean [Glycine max (L.) Merr] plants were exposed to three temperature regimens during seed development to investigate the effect of temperature on the expression of eight defense-related genes and the accumulation of two fungal pathogens in inoculated seeds. In seeds prior to inoculation, either a day/night warm (34/26°C) or a cool temperature (22/18°C) relative to normal (26/22°C) resulted in altered patterns of gene expression including substantially lower expression of PR1, PR3 and PR10. After seed inoculation with Cercospora kikuchii, pathogen accumulation was lowest in seeds produced at 22/18°C in which of all defense genes, MMP2 was uniquely most highly induced. For seeds inoculated with Diaporthe phaseolorum, pathogen accumulation was lowest in seeds produced at 34/26°C in which of all defense genes, PR10 was uniquely most highly induced. Our detached seed assays clearly demonstrated that the temperature regimens we applied during seed development produced significant changes in seed defense-related gene expression both pre- and post inoculation and our findings support the hypothesis that global climate change may alter plant–pathogen interactions and thereby potentially crop productivity.  相似文献   

12.
Relative values for the dry mass in puff-forming regions of Drosophila hydei salivary gland chromosomes were established with a Leitz double beam interference microscope. All measurements were made after RNA digestion.Optical path differences per unit area of the induced puffs 2-48C and 4-81B (temperature induced) and a cytoplasm-free background were recorded. In each of the nuclei used for these measurements, the same procedure was applied to two reference regions in the vicinity of the puff, region 2, 47A-48B and region 4, 81C-82C respectively. For comparison of the dry mass values of a puff region at various time intervals after the onset of puff induction, ratios of the optical path differences of the puff region over that of the reference region were calculated.These ratios were established at 5, 10, 30, 60 and 120 min after the onset of a temperature treatment and compared with the ratio in non-treated animals. From the data it can be concluded that the dry mass in the induced puffs increases gradually up to 30 min. At this time the dry mass ratio for puff 2-48C has reached a value of 150% and that of puff 4-81B, 210%. It is concluded that this increase in dry mass is due almost entirely to a local accumulation of non-histone protein.  相似文献   

13.
Measurements of the integrated absorbancy of naphthol yellow S binding to protein (430 nm) and Feulgen-stained DNA (550 nm) of two puff regions in Drosophila hydei polytene chromosomes revealed a significant increase in the naphthol yellow S binding capacity during the first 5 min of puff induction. The ratio of integrated absorption values at 430 and 550 nm of two chromosome regions, 2-48 C and 4-81 B were determined relative to the ratio of absorption values at 430 and 550 nm of a reference band. These determinations were carried out in a non-puffed state and at 5, 10, 30, 60 and 120 min after onset of a temperature treatment inducing puffs in these regions. The quotient of the absorption ratio of the puff region and the ratio of the reference band provides a relative measure for naphthol yellow S binding to protein. The staining reaction was absent after pronase treatment.—The relative increase in naphthol yellow S binding was most obvious during the first 5 min after onset of puff induction. The binding of naphthol yellow S was increased by a factor 1.7 for puff 2-48 C, and a factor 1.9 for puff 4-81 B. The maximum value, indicating a relative increase by a factor 1.8 in puff 2-48 C and a factor 2.2 in puff 4-81 B was attained in both puffs at 30 min after onset of puff induction.—Among staining procedures performed on sulphydryl groups, free -amino acids and indole groups of tryptophane, only a positive result with the staining reaction on the indole groups was obtained for induced puffs.—Injection of tritiated sodium acetate, methionine-H3-methyl, ethionine-H3-ethyl, C14-sodium bicarbonate, a mixture of 15 H3-labelled L-amino acids and H3-tryptophane at various time intervals prior to puff induction failed to result in a specific incorporation of any of these radioactive substances into newly induced puffs.  相似文献   

14.
Adipocyte differentiation comprises altered gene expression and increased triglyceride storage. To investigate the interdependency of these two events, 3T3-L1 cells were differentiated in the presence of glucose or pyruvate. All adipocytic proteins examined were similarly increased between the two conditions. In contrast, 3T3-L1 adipocytes differentiated with glucose exhibited significant lipid accumulation, which was largely suppressed in the presence of pyruvate. Subsequent addition of glucose to the latter cells restored lipid accumulation and acute rates of insulin-stimulated lipogenesis. These data indicate that extracellular energy is required for induction of adipocytic proteins, while only glucose sustained the parallel increase in triglyceride storage.  相似文献   

15.
16.
17.
18.
在我国南北气候过渡地区, 采用遮阴试验和石蜡切片法, 研究越冬期不同光强对3个不同秋眠型紫花苜蓿(Medicago sativa)品种(‘维多利亚’、 ‘巨人201’和‘游客’)叶片解剖结构的影响。结果表明: 随着光强减弱, 各紫花苜蓿品种表皮结构中上、下表皮角质层厚度, 气孔密度和气孔开度明显下降; 上、下表皮厚度呈上升趋势。随着遮阴强度增加, 叶肉组织中海绵组织细胞宽度显著上升, 栅栏组织厚度、栅栏组织细胞层数、栅栏组织厚度/海绵组织厚度显著下降; 品种间海绵组织厚度和栅栏组织细胞宽度变化趋势不一致。叶片结构整体特征中叶片厚度、叶肉厚度、中脉厚度、组织结构紧密度随光强减弱而显著下降, 组织结构疏松度明显上升, 叶脉突起度变化不明显。品种间各叶片解剖性状变幅及可塑性指数具有明显的差异, 表明其对弱光适应方式不同。Pearson相关分析表明, 各紫花苜蓿品种叶片气孔密度、栅栏组织厚度、叶肉厚度、叶片厚度及栅栏组织厚度/海绵组织厚度与光强呈显著正相关, 可能是紫花苜蓿叶片解剖结构光强敏感特征参数, 其中, ‘维多利亚’叶片敏感特征参数与光强相关程度较低, 与光强相关的性状较少。综合各项分析结果, 初步确定越冬期紫花苜蓿耐阴性与其秋眠性相关, 半秋眠型品种‘维多利亚’ >秋眠型品种‘巨人201’≥非秋眠型品种‘游客’。  相似文献   

19.
20.
We have previously identified two cDNAs encoding vegetative storage proteins (VSPs) in Arabidopsis thaliana. Unlike soybean in which VSPs accumulate at high levels in leaves, A. thaliana VSP mRNAs are abundant in flowers. To understand tissue-specific expression and possible roles of VSPs on reproductive organ development, genes corresponding to VSPs (Vsp1 and Vsp2) and their putative promoters were characterized in this study. Genomic sequence analysis revealed that Vsp1 and Vsp2 resemble each other except in their introns, and that these two genes were organized in a tandem array with an interval of 6 kb in a region. The expression patterns of Vsp1 and Vsp2 were examined using transgenic A. thaliana plants carrying a promoter from Vsp1 or Vsp2 fused to a bacterial -glucuronidase (GUS) reporter gene. The promoter from Vsp1 expressed its effect in gynoecia, especially in styles, the basal and distal ends of ovaries and in siliques, whereas the promoter from Vsp2 showed its activity in vegetative shoots, petioles, peduncles and receptacles of floral organs. These results suggest that expression of Vsp1 and Vsp2 may be developmentally regulated in A. thaliana. In the transgenic plants, the GUS activity was induced by wounding in an area around the mid-rib of leaves. Therefore, Vsp1 and Vsp2 promoters appear to have elements required for both tissue specificity and wounding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号