首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar > 150-fold), miR-7 being the most abundant. A similarly high ratio for miR-7 was observed in human islets. The ratio islet/acinar for miR-375, a previously described islet miRNA, was <10 and is 2.5× more abundant in the islets than miR-7. Therefore, we conclude that miR-7 is the most abundant endocrine miRNA in islets while miR-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression.  相似文献   

2.
Members of the miRNA-200 family regulate olfactory neurogenesis   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) are highly expressed in vertebrate neural tissues, but the contribution of specific miRNAs to the development and function of different neuronal populations is still largely unknown. We report that miRNAs are required for terminal differentiation of olfactory precursors in both mouse and zebrafish but are dispensable for proper function of mature olfactory neurons. The repertoire of miRNAs expressed in olfactory tissues contains over 100 distinct miRNAs. A subset, including the miR-200 family, shows high olfactory enrichment and expression patterns consistent with a role during olfactory neurogenesis. Loss of function of the miR-200 family phenocopies the terminal differentiation defect observed in absence of all miRNA activity in olfactory progenitors. Our data support the notion that vertebrate tissue differentiation is controlled by conserved subsets of organ-specific miRNAs in both mouse and zebrafish and provide insights into control mechanisms underlying olfactory differentiation in vertebrates.  相似文献   

3.
4.
Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.  相似文献   

5.
6.
7.
8.
9.
Very little is known regarding regulation of microRNA (miRNA) biogenesis in normal tissues, tumors, and cell lines. Here, we profiled the expression of 225 precursor and mature miRNAs using real-time PCR and compared the expression levels to determine the processing patterns. RNA from 22 different human tissues, 37 human cancer cell lines, and 16 pancreas and liver tissues/tumors was profiled. The relationship between precursor and mature miRNA expression fell into the following four categories: (1) a direct correlation exists between the precursor and mature miRNA expression in all cells/tissues studied; (2) direct correlation of the precursor and mature miRNA exists, yet the expression is restricted to specific cell lines or tissues; (3) there is detectable expression of mature miRNA in certain cells and tissues while the precursor is expressed in all or most cells/tissues; or (4) both precursor and mature miRNA are not expressed. Pearson correlation between the precursor and mature miRNA expression was closer to one for the tissues but was closer to zero for the cell lines, suggesting that processing of precursor miRNAs is reduced in cancer cell lines. By using Northern blotting, we show that many of these miRNAs (e.g., miR-31, miR-105 and miR-128a) are processed to the precursor, but in situ hybridization analysis demonstrates that these miRNA precursors are retained in the nucleus. We provide a database of the levels of precursor and mature miRNA in a variety of cell types. Our data demonstrate that a large number of miRNAs are transcribed but are not processed to the mature miRNA.  相似文献   

10.
11.
Sparc (Osteonectin), a matricellular glycoprotein expressed by many differentiated cells, is a major non-collagenous constituent of vertebrate bones. Recent studies indicate that Sparc expression appears early in development, although its function and regulation during embryogenesis are largely unknown. We cloned zebrafish sparc and investigated its role during development, using a mo rpholino antisense oligonucleotide-based knockdown approach. Consistent with its strong expression in the otic vesicle and developing pharyngeal cartilages, knockdown of Sparc function resulted in specific inner ear and cartilage defects that are highlighted by changes in gene expression, morphology and behavior. We rescued the knockdown phenotypes by co-injecting sparc mRNA, providing evidence that the knockdown phenotype is due specifically to impairment of Sparc function. A comparison of the phenotypes of Sparc knockdown and known zebrafish mutants with similar defects places Sparc downstream of sox9 in the genetic network that regulates development of the pharyngeal skeleton and inner ear of vertebrates.  相似文献   

12.
Sequence requirements for micro RNA processing and function in human cells   总被引:26,自引:3,他引:23  
  相似文献   

13.
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.  相似文献   

14.
15.
16.
17.
18.
Plants and animals microRNAs (miRNAs) have been proposed to be key regulators of many fundamental processes. However defining miRNAs function has been problematic due to the paucity of miRNA loss-of-function mutants. This is likely due to their small gene size and redundancy as most miRNA have highly related family members. Consequently, the analysis of miRNA function has been primarily based on predictive bioinformatic or transgenic gain-of-function approaches. However, a number of new methodologies have been developed able to result in loss-of-function phenotypes. This includes miRNA sponges in animals and target mimicry in plants, both of which sequesters the mature miRNAs, disrupting endogenous miRNA:mRNA target relationships. Furthermore, artificial miRNAs and RNA interference in plants have been shown to be potent silencers of MIRNA genes. We will discuss the strengths and weaknesses of these methodologies which are potentially of great biotechnological use in medicine and agriculture.  相似文献   

19.
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号