首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The peptidoglycan layer of Spirillum serpens cell walls was isolated from intact cells after treatment with sodium dodecylsulfate and digestion with Pronase. The isolated peptidoglycan contained glucosamine, muramic acid, alanine, glutamic acid, and meso-diaminopimelic acid in the approximate molar ratio of 1:1:2:1:1. Aspartic acid and glycine were the only other amino acids found in significant quantities. N-terminal amino acid analyses of the tetrapeptide amino acids in the peptidoglycan revealed that 54% of the diaminopimelic acid molecules are involved in cross-linkage between tetrapeptides. This amount of cross-linkage is greater than that found in the peptidoglycan of previously studied cell walls of gram-negative bacteria. The polysaccharide backbone was isolated, after myxobacter AL-1 enzyme digestion of the peptidoglycan, by fractionation with ECTEOLA-cellulose and Sephadex G-100. An average length of 99 hexosamines for the polysaccharide chains was found (ratio of total hexosamines to reducing end groups).  相似文献   

2.
Novel peptidoglycans in Caulobacter and Asticcacaulis spp.   总被引:1,自引:1,他引:0       下载免费PDF全文
Peptidoglycan sacculi free of poly-beta-hydroxybutyric acid were prepared from whole cells of four species of Caulobacter and two species of Asticcacaluis and from morphological mutants of Caulobacter crescentus and Caulobacter leidyi. Acid hydrolysates of the sacculi were analyzed quantitatively, and each of the hydrolysates was found to contain significant amounts of only five ninhydrin-reactive compounds: alanine, glutamic acid, alpha , omega-diaminopimelic acid, muramic acid, and glucosamine. Four types of peptidoglycans were distinguishable on the basis of the molar ratios among these five compounds. The respective ratios were as follows: in C. leidyi, 2:1:1:1:0.8; in Asticcacaulis biprosthecum, 1.7:1.6:1.1:0.7; in the cells of the remaining species, 2:1:1:1.2:0.8; and in stalks shed by the abscission mutant 2NY66, 2:1:1:1:1.67. Thus, in addition to some species differences among these caulobacters, it was found that the peptidoglycan sacculus of the stalked C. crescentus cell is chemically differentiated; the cellular peptidoglycan is richer in muramic acid than is the peptidoglycan of typical gram-negative bacteria, and the peptidoglycan of the stalk is correspondingly rich in glucosamine. Empirical formulas for the repeating units of the peptidoglycans have been inferred on the basis of the molar ratios of their amino components.  相似文献   

3.
Bdellovibrio peptidoglycan is of typical gram-negative composition. The molar ratios of alanine:glutamic acid:diaminopimelic acid:muramic acid:glucosamine were about 2:1:1:1:1. Nascent, nongrowing Bdellovibrio bacteriovorus 109J were converted from highly motile vibrios to highly motile spheres when shaken in dilute buffer plus penicillin, cephalothin, bacitracin, or D-cycloserine. The spherical forms contained essentially no sedimentable peptidoglycan; i.e., they were spheroplasts. Spheroplasts induced by penicillin, D-cycloserine, and lysozyme were stable in dilute buffer and did not lyse when subjected to osmotic shock. Normal Bdellovibrio suspended in buffer turned over their peptidoglycan at a rate of approximately 30% h during the initial 120 min of starvation. Chloramphenicol and sodium azide strongly inhibited Bdellovibrio peptidoglycan turnover and the induction of spheroplasts by penicillin. The data indicate that nongrowing B. bacteriovorus are sensitive to penicillin and other antibiotics affecting cell walls because of their high rate of peptidoglycan turnover. It is also concluded that an intact peptidoglycan layer is required for maintaining cell shape, but is not required for osmotic stability of B. bacteriovorus.  相似文献   

4.
Structure of Bordetella pertussis peptidoglycan.   总被引:4,自引:0,他引:4       下载免费PDF全文
Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing [3H]diaminopimelic acid and treated by a hot (96 degrees C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60%). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and less than 2% protein. Radiochemical analyses indicated that 3H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived peptidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of greater than 95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl++ +-alanine.  相似文献   

5.
The peptidoglycan layer of a marine pseudomonad was observed by electron microscopy in thin sections of plasmolyzed intact cells and mureinoplasts but not in untreated intact cells. Only fragments of this layer could be isolated by sodium lauryl sulfate (SLS) treatment of mureinoplast envelopes. Sacculus-like peptidoglycan structures were obtained from growing cells by immediate heat inactivation of cellular autolytic enzymes and subsequent SLS, trypsin, and nuclease treatments. Recently, similar peptidoglycan sacculus-like structures have been obtained by adding SLS to the growing culture and treating the isolated particulate material with nucleases. Thin-sectioned and negatively stained preparations of whole cell peptidoglycan showed compressed profiles of cell-shaped sacculi. Peptidoglycan prepared by SLS treatment of mureinoplast envelopes had a similar composition to that prepared from whole cells. The major amino sugars and amino acids in the peptidoglycan component were glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in the molar ratios 1.18:1.24:1.77:1.00:0.79. Forty-five per cent of the epsilon-amino groups of diaminopimelic acid were cross-linked. The peptidoglycan was estimated to account for about 1% of the cell dry weight.  相似文献   

6.
The cell wall peptodoglycans were isolated from Clostridium botulinum and some other species of the genus Clostridium by hot formamide extraction and their quantitative chemical composition and antigenic properties were determined. The petidoglycan of C. botulinum type E was found to be a diaminopimelic acid (DAP)-containing type composed of glucosamine, muramic acid, glutamic acid, alanine and DAP in the molar ratio of 0.76:0.78:1.00:1.88:0.81. All other types of C. botulinum and Clostridium sporogenes also belonged to the same peptidoglycan type. The peptidoglycans of Clostridium bifermentans and Clostridium histoloyticum contained DAP but they differed from those of C. botulinum in the molar ratio of alanine to glutamic acid. The peptidoglycan of Clostridium perfringens was composed of glutamic acid, alanine, DAP and glycine in the molar ratio of 1.00:1.64:0.94:0.90. On the other hand, the peptidoglycan of Clostridium septicum was found to contain lysine instead of DAP and the molar ratio was 1.00:1.41:0.96 for glutamic acid, alanine and lysine. In spite of the difference in amino acid composition of peptidoglycans among the clostridia, the quantitative precipitin test demonstrated that antiserum against C. botulinum type E peptidoglycan cross-reacted with the peptidoglycans from other clostridia as well as various types of C. botulinum.  相似文献   

7.
Growth pH markedly influenced the composition of the cell envelope of Neisseria gonorrhoeae. The composition of the peptidoglycan from cells grown at pH 7.2 and 8.0 consisted primarily (91%) of muramic acid, glutamic acid, alanine, meso-diaminopimelic acid, and glucosamine in approximate molar ratios of 1:1:2:1:1. The peptidoglycan from cells grown at pH 6.0 contained an accessory protein(s) which accounted for 42% of the weight of the isolated complex.  相似文献   

8.
Cadaverine was found to exist as a component of cell wall peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium. [14C]cadaverine added to the growth medium was incorporated into the cells, and about 70% of the total radioactivity incorporated was found in the peptidoglycan fraction. When the [14C]cadaverine-labeled peptidoglycan preparation was acid hydrolyzed, all of the 14C counts were recovered as cadaverine. The [14C]cadaverine-labeled peptidoglycan preparation was digested with lysozyme into three small fragments which were radioactive and were positive in ninhydrin reaction. One major spot, a compound of the fragments, was composed of alanine, glutamic acid, diaminopimelic acid, cadaverine, muramic acid, and glucosamine. One of the two amino groups of cadaverine was covalently linked to the peptidoglycan, and the other was free. The chemical composition of the peptidoglycan preparation of this strain was determined to be as follows: L-alanine-D-alanine-D-glutamic acid-meso-diaminopimelic acid-cadaverine-muramic acid-glucosamine (1.0:1.0:1.0:1.0:1.1:0.9:1.0).  相似文献   

9.
The chemical nature and distribution of the peptidoglycan in Myxococcus xanthus at various stages of the cellular life cycle were investigated. Vegetative cells and microcysts contained approximately 0.6% by weight of peptidoglycan. The overall composition of the peptidoglycan was similar in both cell types and was approximately 1 glutamic acid, 1 diaminopimelic acid, 1.7 alanine, 0.75 N-acetylglucosamine, and 0.75 N-acetylmuramic acid. (We have assumed that all the hexosamines are N-acetylated.) The sizes of the subunits (estimated by gel filtration) solubilized by muramidases were considerably larger (tetramer and oligomer) in the microcysts than in the vegetative cells (mostly dimer). There was a transient decrease in cross-linking (measured as an increase in the amount of free amino group of diaminopimelic acid) during the stage of microcyst formation when the cells converted from ovoids to spheres. At the same time, there occurred a large and rapid increase in a galactosamine derivative which may have reflected the synthesis of capsular material. Immediately prior to this period of morphogenesis, the cells became resistant to penicillin but remained sensitive to d-cycloserine. The walls of vegetative cells were completely disaggregated by trypsin and sodium lauryl sulfate, suggesting a discontinuous peptidoglycan layer. This was no longer apparent after the ovoid-sphere stage of microcyst formation. The relationship to morphogenesis of the chemical changes in the cell wall is discussed.  相似文献   

10.
The rigid layer (peptidoglycan) of the wall of the chemolithotroph Ferrobacillus ferrooxidans was isolated after various chemical treatments. The removal of specific components was followed by noting in an electron microscope changes in the appearance of the cell surface. The final peptidoglycan was virtually free from proteins and was sensitive to the action of lysozyme. Results of chemical analyses of acidhydrolyzed peptidoglycan revealed three major amino acids and two amino sugars: glutamic acid, α,ε-diaminopimelic acid, alanine, glucosamine, and muramic acid in a ratio of 1:1:2.33:062:088.  相似文献   

11.
During the initial stages of intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the peptidoglycan of the E. coli becomes acylated with long-chain fatty acids, primarily palmitic acid (60%) and oleic acid (20%). The attachment of the fatty acids to the peptidoglycan involves a carboxylic-ester bond, i.e., they were removed by treatment with alkaline hydroxylamine. Their linkage to the peptidoglycan does not involve a protein molecule. When the bdelloplast peptidoglycan was digested with lysozyme, the fatty acid-containing split products behaved as lipopeptidoglycan, i.e., they were extracted into the organic phase of 1-butanol:acetic acid:water (4:15) two-phase system; all of the lysozyme split products generated from normal E. coli peptidoglycan were extracted into the water phase. It is suggested that the function of the acylation reaction is to help stabilize the bdelloplast outer membrane against osmotic forces. In addition, a model is presented to explain how a bdellovibrio penetrates, stabilizes, and lyses a substrate cell.  相似文献   

12.
Two natural variants, i.e. No. 1 and No. 2, not producing actinomycin were isolated from cultures of the actinomycin C-producing organism Actinomyces sp. 26-115. Variant No. 1 differed from the active variant by the growth dynamics and colony morphology. Variant No. 2 was close to the active variant by the growth dynamics. It was shown with electron microscopy that the cells of variant No. 1 differed from those of the active variant in the number and form of the mycelial septa, more even and compact structure of the cell walls and higher sensitivity to actinomycin. Still, they were more stable to the effect of lysozyme and ultrasound. The cell walls of the inactive variant No. 1 gradually lost teichoic acid during development, while the loss of peptidoglycan was observed only on transfer to the stationary phase. The cell walls of the active variant lost teichoic acid and peptidoglycan at the same time on transfer to the stationary phase. Peptidoglycans of both variants contained diaminopimelic acid (the configuration of which was not determined) and glycine (1:1) as differentiating amino acids. The two adjacent tetrapeptides were joined with one glycine radical. The peptidoglycan peptide chains of both variants contained muramic, glutamic and diaminopimelic acids and alanine (1:1:1:2). The peptidoglycans of the inactive variant No. 1 contained in addition valine and isoleucine. However, it is hardly probable that they are contained by the peptidoglycan peptide chains.  相似文献   

13.
The structure of the endospore cell wall peptidoglycan of Bacillus subtilis has been examined. Spore peptidoglycan was produced by the development of a method based on chemical permeabilization of the spore coats and enzymatic hydrolysis of the peptidoglycan. The resulting muropeptides which were >97% pure were analyzed by reverse-phase high-performance liquid chromatography, amino acid analysis, and mass spectrometry. This revealed that 49% of the muramic acid residues in the glycan backbone were present in the delta-lactam form which occurred predominantly every second muramic acid. The glycosidic bonds adjacent to the muramic acid delta-lactam residues were resistant to the action of muramidases. Of the muramic acid residues, 25.7 and 23.3% were substituted with a tetrapeptide and a single L-alanine, respectively. Only 2% of the muramic acids had tripeptide side chains and may constitute the primordial cell wall, the remainder of the peptidoglycan being spore cortex. The spore peptidoglycan is very loosely cross-linked at only 2.9% of the muramic acid residues, a figure approximately 11-fold less than that of the vegetative cell wall. The peptidoglycan from strain AA110 (dacB) had fivefold-greater cross-linking (14.4%) than the wild type and an altered ratio of muramic acid substituents having 37.0, 46.3, and 12.3% delta-lactam, tetrapeptide, and single L-alanine, respectively. This suggests a role for the DacB protein (penicillin-binding protein 5*) in cortex biosynthesis. The sporulation-specific putative peptidoglycan hydrolase CwlD plays a pivotal role in the establishment of the mature spore cortex structure since strain AA107 (cwlD) has spore peptidoglycan which is completely devoid of muramic acid delta-lactam residues. Despite this drastic change in peptidoglycan structure, the spores are still stable but are unable to germinate. The role of delta-lactam and other spore peptidoglycan structural features in the maintenance of dormancy, heat resistance, and germination is discussed.  相似文献   

14.
The cell wall peptidoglycans were isolated from Clostridium botulinum and some other species of the genus Clostridium by hot formamide extraction and their quantitative chemical composition and antigenic properties were determined. The peptidoglycan of C. botulinum type E was found to be a diaminopimelic acid (DAP)-containing type composed of glucosamine, muramic acid, glutamic acid, alanine and DAP in the molar ratio of 0.76:0.78:1.00:1.88:0.81. All other types of C. botulinum and Clostridium sporogenes also belonged to the same peptidoglycan type. The peptidoglycans of Clostridium bifermentans and Clostridium histolyticum contained DAP but they differed from those of C. botulinum in the molar ratio of alanine to glutamic acid. The peptidoglycan of Clostridium perfringens was composed of glutamic acid, alanine, DAP and glycine in the molar ratio of 1.00:1.64:0.94:0.90. On the other hand, the peptidoglycan of Clostridium septicum was found to contain lysine instead of DAP and the molar ratio was 1.00:1.41:0.96 for glutamic acid, alanine and lysine. In spite of the difference in amino acid composition of peptidoglycans among the Clostridia, the quantitative precipitin test demonstrated that antiserum against C. botulinum type E peptidoglycan cross-reacted with the peptidoglycans from other Clostridia as well as various types of C. botulinum.  相似文献   

15.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

16.
Autolysin-defective pneumococci continue to synthesize both peptidoglycan and teichoic acid polymers (Fischer and Tomasz, J. Bacteriol. 157:507-513, 1984). Most of these peptidoglycan polymers are released into the surrounding medium, and a smaller portion becomes attached to the preexisting cell wall. We report here studies on the degree of cross-linking, teichoic acid substitution, and chemical composition of these peptidoglycan polymers and compare them with normal cell walls. peptidoglycan chains released from the penicillin-treated pneumococci contained no attached teichoic acids. The released peptidoglycan was hydrolyzed by M1 muramidase; over 90% of this material adsorbed to vancomycin-Sepharose and behaved like disaccharide-peptide monomers during chromatography, indicating that the released peptidoglycan contained un-cross-linked stem peptides, most of which carried the carboxy-terminal D-alanyl-D-alanine. The N-terminal residue of the released peptidoglycan was alanine, with only a minor contribution from lysine. In addition to the usual stem peptide components of pneumococcal cell walls (alanine, lysine, and glutamic acid), chemical analysis revealed the presence of significant amounts of serine, aspartate, and glycine and a high amount of alanine and glutamate as well. We suggest that these latter amino acids and the excess alanine and glutamate are present as interpeptide bridges. Heterogeneity of these was suggested by the observation that digestion of the released peptidoglycan with the pneumococcal murein hydrolase (amidase) produced peptides that were resolved by ion-exchange chromatography into two distinct peaks; the more highly mobile of these was enriched with glycine and aspartate. The peptidoglycan chains that became attached to the preexisting cell wall in the presence of penicillin contained fewer peptide cross-links and proportionally fewer attached teichoic acids than did their normal counterparts. The normal cell wall was heavily cross-linked, and the cross-linked peptides were distributed equally between the teichoic acid-linked and teichoic acid-free fragments.  相似文献   

17.
Cell wall peptidoglycan synthesis in Escherichia coli is under stringent control. During amino acid deprivation, peptidoglycan synthesis is inhibited in re1A+ bacteria but not in re1A mutants. The relaxed synthesis of peptidoglycan by amino acid deprived re1A bacteria was inhibited by several beta-lactam antibiotics at concentrations which inhibited cell elongation in growing cultures suggesting that the transpeptidase activity of penicillin-binding protein (PBP-1B) was involved in this process. Structural studies on the peptidoglycan also indicated the involvement of transpeptidation in relaxed peptidoglycan synthesis. The peptidoglycan synthesized during amino acid deprivation was cross-linked to the existing cell wall peptidoglycan, and the degree of cross-linkage was the same as that of peptidoglycan synthesized by growing control cells. The relaxed synthesis of peptidoglycan was also inhibited by moenomycin, an inhibitor of the in vitro transglycosylase activities of PBPs, but the interpretation of this result depends on whether the transglycosylases are the sole targets of moenomycin in vivo. Most of the peptidoglycan lipoprotein synthesized by histidine-deprived re1A+ bacteria was in the free form as previously reported, possibly because of the restriction in peptidoglycan synthesis. In support of this proposal, most of the lipoprotein synthesized during histidine deprivation of re1A mutants was found to be covalently linked to peptidoglycan. Nevertheless, the peptidoglycan synthesized by amino acid deprived re1A bacteria was apparently deficient in bound lipoprotein as compared with peptidoglycan synthesized by normal growing control bacteria suggesting that the rate of lipoprotein synthesis during amino acid deprivation may be limiting.  相似文献   

18.
Covalent linkages between peptidoglycan and cellodextrins in the cell walls of Rhizobium were defined by the analysis of lysozyme split products. Digestion of peptidoglycan with lysozyme resulted in the liberation, beside disaccharide tetrapeptide fragments composed of glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in a molar ratio 1:1:2:1:1, also significant amounts of glucose and its polymers. The neutral carbohydrates composed of glucose, were further purified and determined as cellobiose, cellotriose and cellotetrose. Peptidoglycans pretreated with cellulase, which librated glucose and cellobiose, still contains glucose linked by lysozyme sensitive but cellulase insensitive bond.  相似文献   

19.
The bag shaped peptidoglycan layer of Rhizobium cell wall was isolated from intact cells after treatment with sodium dodecylsulfate and trypsin, chymotrypsin or pepsin digestion. Results of chemical analysis of acid hydrolyzed peptidoglycan revealed beside two amino sugars: glucosamine and muramic acid, three major amino acids; alanine, glutamic acid and 2,6-diaminopimelic acid and also significant amount of glucose. Evidence were provided that the polyglucose found in peptidoglycan preparations of three strains of Rhizobium trifolii, one of Rhizobium leguminosarum and one of Rhizobium meliloti consist of cellulose microfibrils. The content of cellulose present in Rhizobium peptidoglycans ranged from 60 to 80%. Methods of peptidoglycan purification from the cellulose microfibrils are described.  相似文献   

20.
Structure of the peptide network of pneumococcal peptidoglycan   总被引:15,自引:0,他引:15  
The peptide network of Streptococcus pneumoniae cell walls was solubilized using the pneumococcal autolytic amidase (N-acetylmuramoyl-L-alanine amidase, EC 3.5.1.28). The peptide material was fractionated into size classes by gel filtration followed by reverse-phase high-performance liquid chromatography which resolved the peptide population into over 40 fractions. About 40% of the lysines present participate in cross-links between stem peptides. The main components (3 monomers, 5 dimers, and 2 trimers), accounting for 77% of all the wall peptides, were purified. Their structures were determined using a combination of amino acid and end-group analysis, mass spectrometry, and gas-phase sequencing. Two different types of cross-links between stem peptides were found. In the most abundant type there is an alanylserine cross-bridge between the alanine in position 4 of the donor stem peptide and the lysine at position 3 of the acceptor peptide, as in type A3 peptidoglycan. In the second type of cross-link there is no intervening cross-bridge, as in the type A1 peptidoglycan of Gram-negative bacteria. The data indicate that pneumococcal peptidoglycan has a structural complexity comparable to that recently shown in some Gram-negative species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号