首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane.  相似文献   

2.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

3.
Release of sialic acid from the glycoproteins of the normal human erythrocyte surface by neuraminidase was investigated. The glycoproteins of the membrane were separated by electrophoresis in sodium dodecylsulfate polyacrylamide gels. Sialic acid was determined in the sliced gel by a modification of the 2-thiobarbituric acid method, revealing three sialic acid-containing glycoproteins. Treatment of intact erythrocytes with neuraminidase to remove varying amounts of sialic acid indicates that all the glycoproteins are essentially equally accessible to the neuraminidase when 20%–60% of the sialic acid is removed. Similar but not quite identical results were obtained with isolated erythrocyte membranes.Treatment of intact cells with the lectins concanavalin A or phytohemagglutinin-P resulted in shielding of about 25% and 50%, respectively, of the sialic acid from neuraminidase. Concanavalin A blocked sialic acid release over long time periods and with high concentrations of neuraminidase. In contrast, the sialic acid shielding by phytohemagglutinin-P can be overcome by high concentrations of neuraminidase. Both lectins were found to shield the various glycoproteins selectively, with different patterns of shielding. Wheat germ agglutinin exhibited no detectable effect on the susceptibility of the erythrocyte sialic acid to neuraminidase.  相似文献   

4.
Manipulation of the hypothalamic-pituitary-adrenal axis selectively alters alpha-adrenergic potentiation of the cyclic AMP response to beta-adrenergic receptor stimulation in rat cerebral cortex. Calcium has been implicated in this alpha-receptor-mediated response, which may involve activation of phospholipases A2 and C and/or calmodulin-dependent adenylate cyclase. We therefore investigated the effects of stress and corticosterone (CORT) on membrane calmodulin-dependent adenylate cyclase and noradrenaline-stimulated cyclic AMP accumulation in brain slices. Repeated stress for 21 days selectively attenuated the adenylate cyclase response to calcium/calmodulin in cerebral cortex membranes, without affecting basal or forskolin-stimulated enzyme activity. There was no such effect in hippocampal membranes. The same pattern of response was elicited by daily CORT injection (50 mg/kg s.c.) for 21 days, while vehicle injection had no effect. CORT in the drinking water (400 micrograms/ml) elicited the same reduction of body weight as CORT injections, but had no effect on calmodulin adenylate cyclase. In parallel with calmodulin adenylate cyclase, cyclic AMP accumulation elicited by noradrenaline in slices of cerebral cortex was suppressed by both stress and daily CORT injections, with smaller effects observed with CORT in the drinking water. Unlike calmodulin adenylate cyclase, noradrenaline-stimulated cyclic AMP accumulation in hippocampus showed the same suppression as that in cerebral cortex. These results are discussed in relation to the differential mode of coupling of alpha-adrenergic receptors to cyclic AMP-generating systems between brain regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

6.
In this study an attempt was made to elucidate the possible mechanism of the brain microsomal (Na+-K+)ATPase inhibition based on the assumption that glycoprotein part of the enzyme is exposed on the outer membrane surface. In our experiments the modification with concanavalin A of sugar end groups exposed by neuraminidase treatment resulted in a significant decrease of the brain (Na+-K+)ATPase activity. The percentage of the enzyme inhibition by concanavalin A binding to the neuraminidase-treated preparation corresponds to the amount of liberated sialic acids. The modification of the glycoprotein part of the brain (Na+-K+)ATPase complex by neuraminidase and concanavalin A treatments did not affect K+-nitrophenylphosphatase activity.  相似文献   

7.
Electron cytochemical studies have been made of the effect of various concentrations of the glutamic acid on localisation of adenylate and guanylate cyclases in synaptosomes from the brain cortex of rats. It was found that the glutamic acid (10(-3) M) stimulates the activity of intrasynaptosomal adenylate cyclase, but does not affect postsynaptic pool of the enzyme. The effect of glutamate on guanylate cyclase results in the increase of the frequency of the reaction both in synaptosomal and postsynaptic membranes. It is suggested that in the conduction of glutamate signal, guanylate cyclase--cGMP, but not adenylate cyclase--cAMP, system may be involved, although activation of intrasynaptosomal adenylate cyclase indicates its participation in presynaptic processes.  相似文献   

8.
The neonatal administration of 5,7-dihydroxytryptamine to rats (100 mg kg?1 s.c. on the 1st and 2nd day after birth) resulted in marked reductions in serotoninergic presynaptic markers ([3H]-5-HT synaptosomal uptake, tryptophan hydroxylase activity and endogenous 5-HT content) in various forebrain areas, particularly the cerebral cortex and the hippocampus. In contrast, this treatment produced an increased outgrowth of serotoninergic terminals in the brain stem as judged by the significant increments of these presynaptic markers in this region. Both in the hippocampus and the brain stem, these 5,7-dihydroxytryptamine-induced changes in serotoninergic innervation were associated with a transient increase in 5-HT-sensitive adenylate cyclase activity. No significant alteration of the specific high affinity binding of [3H]-5-HT to synaptosomal membranes from various brain regions was detected in 5,7-dihydroxytryptamine-treated rats for at least the first postnatal month.The chronic blockade of 5-HT receptors by metergoline (5 mg kg?1 day?1 from day 3 to day 22 after birth) altered neither the changes in presynaptic markers nor the evolution of [3H]-5-HT high affinity binding in 5,7-dihydroxytryptamine-treated rats.These findings further illustrate that the high affinity binding sites for [3H]-5-HT do not correspond to postsynaptic 5-HT receptors coupled to adenylate cyclase in the rat brain. Apparently, 5-HT receptors play no role in the increased outgrowth of serotoninergic systems in the brain stem following neonatal 5,7-dihydroxy-tryptamine treatment.  相似文献   

9.
Gangliosides inhibit basal, thyrotropin-induced and fluoride-induced adenylate cyclase activity of human thyroid membranes in physiological conditions. In contrast neutral glycolipids, phospholipids and neuraminic acid containing oligosaccharides show no effect. The efficacy of inhibition is more dependent upon the position of the sialic acid residues than upon their absolute number. In general gangliosides with disialyl groups are more inhibitory than those with single sialyl moieties. The inhibitory effects of the individual gangliosides on the two modes of stimulation are parallel. This parallelism suggests that the inhibitory effect is located at the postreceptor level and that the gangliosides interact directly with the adenylate cyclase system. A possible role of thyroid membrane gangliosides as suppressive cofactors of adenylate cyclase is discussed in relation to recent findings of stimulating anti-ganglioside antibodies in Graves' disease.  相似文献   

10.
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.  相似文献   

11.
Exogenous sialic acid at 3 mM and higher concentrations inhibits the basal adenylate cyclase activity and the activity stimulated by thyrotropin (TSH) and fluoride in the human thyroid membrane fraction; 30 mM-sialic acid acts as an inhibitor of TSH binding. The decrease of these activities at high sialic acid concentrations might be ascribed to changes in membrane conformation caused by acidic character of this sugar.  相似文献   

12.
Angiotensin II can inhibit glucagon-stimulated cyclic AMP production in hepatocytes and adenylate cyclase activity in hepatic membranes. Pertussis toxin, an exotoxin produced by Bordetella pertussis, was used to investigate the role of the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase (Ni) in coupling angiotensin receptors to the adenylate cyclase system. An assay was developed using [32P] NAD+ to quantitate the amount of Ni protein in the membrane and the extent of its ADP-ribosylation catalyzed by toxin. The ability of angiotensin to inhibit adenylate cyclase and interact with its receptor was compared with the degree of modification of Ni in membranes prepared from isolated hepatocytes. In control membranes angiotensin II inhibited basal adenylate cyclase by 35%. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin did not inhibit adenylate cyclase. However, the attenuation of angiotensin's effect on cyclase was not linearly correlated with the degree of modification of Ni; ADP-ribosylation of greater than 80% of the Ni was required before a reduction of the angiotensin effect was observed. A possible explanation for this finding is an excess of Ni molecules in the membrane (approximately 3.4 pmol/mg of membrane protein) over angiotensin II receptors (approximately 1.2 pmol/mg of membrane protein). 125I-angiotensin bound to sites in the membrane with two affinities. Computer fitting of the binding isotherms yielded parameters of N1 = 279 fmol/mg protein, Kd1 = 0.2 nM; N2 = 904 fmol/mg protein, Kd2 = 1.4 nM. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin bound to only one site with binding parameters of N = 349 fmol/mg protein, Kd = 0.4 nM. GTP-gamma-S caused a 7-fold increase in the Kd of this site to 2.7 nM. Overall, the data indicate that the Ni protein mediates the effect of angiotensin on adenylate cyclase. The observation that GTP-gamma-S can markedly decrease the affinity of angiotensin receptors when all Ni molecules are ADP-ribosylated suggests that angiotensin receptors may couple to other GTP-binding proteins which may mediate the effects of angiotensin in other signal transduction systems.  相似文献   

13.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

14.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

15.
R K Margolis  R U Margolis  C Preti  D Lai 《Biochemistry》1975,14(22):4797-4804
The distribution, carbohydrate composition, and metabolism of glycoproteins have been studied in mitochondria, microsomes, axons, and whole rat brain, as well as in various synaptosomal subfractions, including the soluble protein, mitochondria, and synaptic membranes. Approximately 90% of the brain glycoproteins occur in the particulate fraction, and they are present in particularly high amounts in synaptic and microsomal membranes, where the concentration of glycoprotein carbohydrate is 2-3% of the lipid-free dry weight. Treatment of purified synaptic membranes with 0.2% Triton X-100 extracted 70% of the glycoprotein carbohydrate but only 35% of the lipid-free protein residue, and the resulting synaptic membrane subfractions differed significantly in carbohydrate composition. The glycoproteins which are not extracted by Triton X-100 also have a more rapid turnover, as indicated by the 80-155% higher specific activity of hexosamine and sialic acid 1 day after labeling with [3H]glucosamine in vivo. The specific activity of sialic acid in the synaptosomal soluble glycoproteins 2 hr after labeling was greater than 100 times that of the synaptosomal particulate fraction, whereas the difference in hexosamine specific activity in these two fractions was only twofold, and by 22 hr there was little or no difference in the specific activities of sialic acid and hexosamine in synaptosomal soluble as compared to membrane glycoproteins. These data indicate that sialic acid may be added locally to synaptosomal soluble glycoproteins before there is significant labeling of nerve ending glycoproteins by axoplasmic transport. Fifty to sixty percent of the hyaluronic acid and heparan sulfate of brain is located in the various membranes comprising the microsomal fraction, whereas half of the chondroitin sulfate is soluble and only one-third is in microsomal membranes. When microsomes are subfractionated on a discontinuous density gradient over half of the hyaluronic acid and chondroitin sulfate are found in membranes with a density less than that of 0.5 M sucrose (representing a six- to sevenfold enrichment over their concentrations in the membranes applied to the gradient), whereas half of the heparan sulfate is present in membranes with a density greater than that of 0.8 M.  相似文献   

16.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

17.
To assess the influence of membrane lipid composition on beta-adrenergic receptor number and adenylate cyclase activity in aging, we investigated the effect of cholesteryl hemisuccinate on these parameters in lung membranes of 3-, 12-, and 24-month-old CDF (F-344) rats. When cholesteryl hemisuccinate (0.5 mg/ml) was incubated with lung membranes, beta-adrenergic receptor density was increased by 70%. This effect was the same for each age group studied and indicated that the density of both basal and CHS-sensitive receptors is unaltered in rat lung with age. Forskolin, NaF, p[NH]ppG, and isoproteronol-stimulated adenylate cyclase activity is 30% lower in lung membranes from aged rats. Since enzyme activity is affected by the lipid environment and membrane composition often changes with age, we assessed adenylate cyclase activity following cholesteryl hemisuccinate incorporation. There was up to a 75% decrease in adenylate cyclase activity following cholesteryl hemisuccinate incorporation in lung membranes in each of the three age groups. In untreated membranes, there was no significant difference in cholesterol or lipid phosphate content with age. These data suggest that cholesterol content does not account for alterations in senescent rat lung adenylate cyclase activity.  相似文献   

18.
The effect of sugars on 125I-thyroid-stimulating hormone binding to beef thyroid membranes was studied to determine their role in thyroid-stimulating hormone (TSH) binding. At 0.1 M concentration, N-acetylneuraminic acid produced a 3- to 7-fold increase in TSH binding, was the only sugar to enhance TSH binding, and did so whether binding was determined in the cyclase medium or under conditions of optimum binding. The enhanced TSH binding remained after the membranes were removed from the high NeuAc concentration and an effect was observed at concentrations of 10 mM NeuAc. NeuAc did not alter the kinetics of TSH binding but the pH optimum for TSH binding shifted from pH 5.5 to 7.5 in the presence of NeuAc. Incubation of the membranes with increasing concentrations of NeuAc resulted in increased sialic acid content of the membranes. The NeuAc concentration curve of membrane sialic acid and TSH binding were roughly parallel. The capacity of the low affinity site increased from 0.74 to 2.5 nmol/mg of protein in the presence of NeuAc. The apparent affinity (0.88 X 10(6) M-1) of this site was unaffected by NeuAc. With the high affinity site, NeuAc increased both the apparent affinity and capacity from 2.2 X 10(8)M-1 to 5.5 X 10(8) M-1 and 1.6 to 3.1 pmol/mg of protein, respectively. Neuraminidase or neuraminidase plus beta-galactosidase incubation of the membranes removed approximately 60% of the sialic acid from the membranes within 15 to 30 min but did not affect TSH binding. Large quantities of sialic acid were detected in the soluble fractions during isolation of the membranes, 4 to 5% of which was ultrafilterable and not associated with high molecular weight proteins. It is concluded that among the sugars tested, NeuAc exhibits an unique effect on TSH binding that may have physiological significance. The inability to alter TSH binding by enzymatic removal of endogenous sialic acid suggests that either NeuAc resistant to hydrolysis is sufficient to maintain TSH binding or that NeuAc important in TSH binding is removed during membrane preparation but is replaced by incubation with exogenous NeuAc.  相似文献   

19.
D C Bode  P B Molinoff 《Biochemistry》1988,27(15):5700-5707
The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The beta-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of beta-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40 degrees C was not associated with a change in anisotropy.  相似文献   

20.
The present study was designed to test the effects of neuraminidase and some proteolytic enzymes on the binding of 125I-HYP (hydroxybenzylpindolol) to beta-adrenoreceptors of rat cardiac membranes. The influence of some S-S and -SH active agents on the ligand binding used was also examined. The decrease in membrane sialic acid content did not alter the binding of ligand used. The degradation of membrane protein by proteases resulted in a time and enzyme type dependent decrease in the binding of 125I-HYP. It was found that the dithiotreitol pretreatment produced more profound decrease in ligand binding than reduced glutathione. Cysteine and mercaptoethanol were ineffective. The effect of dithiotreitol was dependent on the time of preincubation and on the agent concentration used. The decrease in ligand binding was also observed after the alkylation of -SH groups by iodoacetamide and N-ethylmaleimide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号