首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disruption of microtubules with nocodazole or microfilaments with cytochalasin B did not prevent mother centrioles from nonrandom, preferentially perpendicular orientation with respect to the substrate plane after FCCP treatment. The microtubules affect negatively the reorientation of centrioles, because after their disruption by nocodazole the percentage of centrioles with the perpendicular orientation (the angle is tipped to the substrate plane by over 74 degrees) is seen to increase. The microfilaments have the positive effect, because after their disruption by cytochalasin B the share of centrioles with the perpendicular orientation decreases. Thus, our observations do not support the hypothesis that the long microtubules can provide the perpendicular orientation of centrioles anchoring them in the cytoplasm.  相似文献   

2.
B Maro  M C Marty  M Bornens 《The EMBO journal》1982,1(11):1347-1352
FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone), a potent uncoupler of oxidative phosphorylation, induces the complete disruption of cellular microtubules. A further analysis of this effect on BHK21 cells has shown that a decrease in the number of microtubules can be observed 15 min after adding FCCP and there is complete disruption after 60 min. Regrowth of microtubules was initiated 30 min after removal of FCCP, in marked contrast with the rapid reversion observed when microtubules are disrupted by nocodazole. A similar delay was required for the recovery of mitochondrial function as assessed by rhodamine 123 labelling. The effect of FCCP on microtubules was partially inhibited by preincubation of the cells with NaN3, suggesting that FCCP acts on microtubules through mitochondria. FCCP did not depolymerize microtubules of cells permeabilized with Triton X-100. In vitro polymerisation of microtubule protein was only slightly diminished by concentrations of FCCP which provoke complete disassembly in vivo. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the microtubules polymerized in vitro in the presence of FCCP showed a reduced amount of high mol. wt. proteins, mainly MAP 2, associated with them. In an attempt to reproduce the mitochondrial effects of FCCP in vitro, we checked the effects of alkaline pH and calcium on microtubule protein polymerization in the presence of FCCP. FCCP did not influence the calcium inhibitory effect but did significantly increase the inhibitory effect of alkaline pH. We conclude that FCCP could depolymerise microtubules in vivo through a dual operation: increasing the intracellular pH by the disruption of the mitochondrial H+ gradient and decreasing the stability of microtubules by impairing the binding of microtubule-associated proteins.  相似文献   

3.
It has been shown that after enucleation of the PE cells with cytochalasin D the centrioles remain in approximately 80% of cytoplasts. Some cytoplasts contain only single centriole, either a mother (active) of a daughter (inactive) one. 20% cytoplasts have no centrioles. 2h after enucleation the centrosome structure in the cytoplasts did not differ from that in normal cells. 14-16 h after enucleation in many cytoplasts large secondary lysosomes and lipid droplets appeared around the centrosome. At this time in some cytoplasts in the centrosome we observed free microtubule convergence foci. 14-16 h after the enucleation, some cytoplasts have doubling centrioles. Under the influence of ouabain (30 min), the number of active centrioles oriented perpendicularly to the substrate plane in the cytoplasts increased. We suggest that the preferentially perpendicular orientation of centrioles to the substrate plane does not depend on the nuclear activity.  相似文献   

4.
In polarizing and migrating 3T3/Balb mouse fibroblasts, the centrioles are located between the nucleus and the leading edge of the cell. In cells within the monolayer and in migrating cells, the centrioles have a random orientation towards the substrate. In polarized cells, that still remain in the monolayer, one centriole may be perpendicular to the substrate plane in 70% of cases. Upon polarization and migration of fibroblasts, the number of microtubules, which radiate from the centriolar region, increases. These data support a hypothesis that the number of microtubules in the cell centre characterizes the rate of their renovation in the cytoplasm. It is concluded that the cell centre is strongly involved in polarization and migration of fibroblasts.  相似文献   

5.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca2+-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

6.
Small fragments of the peripheral cytoplasm were obtained from cytochalasine B-treated mouse embryo fibroblasts and studied for distribution of microtubules by indirect immunofluorescence. Microtubules were demonstrated to progressively depolymerize in these fragments which did not contain any tubules after 6 hours of incubation in the growth medium. This effect was specific for microtubules, since the distribution of intermediate filaments remained unchanged during incubation. The fragments remained viable during incubation, inasmuch no changes were detectable in the membrane potential of the mitochondria stained with rhodamine 123. Progressive destruction of microtubules in the tiny cell fragments is likely to be related to the lack of centrioles in such fragments.  相似文献   

7.
In brown algal fertilization, a pair of centrioles is derived from the male gamete, irrespective of the sexual reproduction pattern, i.e., isogamy, anisogamy, or oogamy. In this study, the manner in which the maternal centriole structure is destroyed in early zygotes of the isogamous brown alga Scytosiphon lomentaria was examined by electron microscopy. At fertilization, the zygote had two pairs of centrioles (flagellar basal bodies) derived from motile male and female gametes, and there was no morphological difference between the two pairs. The flagellar basal plate and the axonemal microtubules were still connected with the distal end of centrioles. Ultrastructural observations showed that the integrity of maternal-derived centrioles began to degenerate even in the 1-h-old zygote. At that time, the cylinder of triplet microtubules of the maternal centrioles became shorter from the distal end, and a section passing through the centrioles indicated that a part of the nine triplets of microtubules changed into doublet or singlet microtubules by degeneration of B and/or C tubules. In 2-h-old zygote, there was no trace of maternal centrioles ultrastructurally, and only the paternal centrioles remained. Further, reduction of centrin accompanying destruction of the maternal centrioles was examined in immunofluorescence microscopy. Centrin localized at the paternal and the maternal centrioles had the same fluorescence intensity in the early zygotes. At 4-6 h after fertilization, two spots indicating centrin localization showed different fluorescence intensity. Later, the weaker spot disappeared completely. These results showed that there is a difference in time between the destruction of the centriolar cylinders and the reduction of centrin molecules around them.  相似文献   

8.
We examined the fine structure of migrating granule cell neurons in cerebellar microexplant cultures. Radially migrating bipolar cells extended microspikes or small filopodia from their soma and processes and frequently made contact with neighboring cells. These microspikes contained microfilaments but no microtubules. At the later phase of the migration, in which they had symmetrical bipolar long processes, filopodia extending from perikarial region of cells contained microtubules, suggesting that they are precursors of the future thick perpendicular processes. When cell bodies changed orientation from radial to perpendicular, microtubules that were nucleated from perinuclear centrioles frequently extended into both thick radial and perpendicular processes from the perikarial region. Bundles of 10nm intermediate filaments also appeared in these processes. During migration by the perpendicular contact guidance, many filopodia extending from both the thick leading processes and thin trailing processes made close contacts with the radial parallel neurite. These findings suggest that; 1) The direct contact of the filopodia from both the growth cones and their processes of the granule cells to the neurite bundle plays roles in both the parallel and perpendicular contact guidances. 2) The spacial and temporal changes of cytoskeletons and the association of microtubules with perinuclear centrioles are important for the formation of perpendicular processes and initiation of the perpendicular contact guidance.  相似文献   

9.
Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), ouabain and calcium ionophore A23187 caused a centrosome restructuring expressed in mean number increase of satellites on the active (mother) centriole, in an increase of the mean slope of centrioles to the substrate surface and in the more frequent occurrence of primary cilia. In the presence of FCCP the effect appeared only in 10 min and retained for 2 h. The ouabain caused the separation of active and inactive centrioles in more than in a half of the cells. The data obtained permit to conclude that depolarization of the plasmatic membrane only is needed for the initiation of centrosome restructuring. The authors propose that this reaction of centrosome is a component of the cell overall response to nonspecific lesions.  相似文献   

10.
SYNOPSIS. Zoosporulation in Labyrinthula sp. in monoxenic culture was initiated by aggregation of spindle cells into reticulate sori. The spindle cells then changed into rounded or oval cells and formed, de novo, 2 pairs of centrioles at opposite sides of each nucleus. A pair of granular aggregates (protocentrioles) ~ 240 mμ in diameter served as precursor bodies during centriole formation. Spindle microtubules around the prophase nucleus connected the pairs of centrioles but were not found in the nucleoplasm until nuclear envelope fragmentation occurred. Prophase nuclei of uninucleated sporangia contained synaptinemal complexes; therefore, meiosis is presumed to occur. The envelope fragments moved toward the centrioles and regrouped to form the nuclear membranes of the daughter cells. Alternating nuclear and cytoplasmic divisions subdivided the preparation into 8 cells which differentiated into laterally biflagellated zoospores. Flagellar development involved growth of the kinetosome microtubules into a bud which formed over the kinetosome tangential to the cell surface. Kinetosomes were derived directly from centrioles with little differentiation other than addition of an electron-dense core to the lumen of the centriole. Zoospore ultrastructure included a stigma comprised of a row of electron-dense granules located slightly under the plasmalemma and posterior to the pair of kinetosomes. A single row of 17–21 microtubules lay parallel to the stigma granules, one or more being connected to the anterior kinetosome. A striated fiber apparatus similar to that found in some phytoflagellates connected the midregions of the kinetosomes. Fibers 1.0–1.2 μ long were attached to the plasmalemma around the base of the anterior flagellum. Zoospores settled on the substrate and differentiated directly into spindle cells. Since synaptinemal complexes were observed the planonts are probably haploid zoospores and probably not gametes since planogametic copulation was not observed.  相似文献   

11.
At prophase in Pleurastrum, extranuclear spindle microtubules develop from the region of centrioles, which lie lateral to the nucleus midway between the future sites of the metaphase spindle poles. The microtubules then move laterally to overarch the nucleus and finally become incorporated into the spindle. The centrioles do not migrate and therefore lie in the same plane as the chromosomes at metaphase. At telophase, 2, more different systems of microtubules develop from the vicinity of the centrioles—a phycoplast and extensive arrays of microtubules that ensheath the daughter nuclei. Cell division in the filamentous Pleurastrum is compared to that in the green flagellate, Platymonas. The similarities between cell division in the 2 algae are interpreted as evidence: (i) that rhizoplasts (which in Platymonas resemble myofibrils) are somehow homologous to microtubules; and, (ii) that cell division in Pleurastrum differs from cell division in other examined filamentous chlorophycean genera because Pleurastrum has an independent evolutionary origin from a monad with Platymonas-like characteristics.  相似文献   

12.
13.
The two centrioles that are localized close to each other and to the nucleus in single Madin-Darby Canine kidney cells (MDCK) move apart by distances as large as 13 microns after the establishment of extensive cellular junctions. Microfilaments, and possibly microtubules appear to be responsible for this separation. In fully polarized cells, the centrioles are localized just beneath the apical membrane. After disruption of intercellular junctions in low calcium medium, the centrioles move back towards the cell center. This process requires intact microtubules but happens even in the absence of microfilaments. These results indicate that the position of centrioles is determined by opposing forces produced by microtubules and microfilaments and suggest that the balance between these forces is modulated by the assembly of cellular junctions. Centriole separation appears to be an early event in the process that precedes their final positioning in the apical-most region of the polarized cell.  相似文献   

14.
Human cell lines derived from three epithelial carcinomas (CaSki, HeLa, SiHa), one B lymphoma (BL60), one promyelocytic (HL60), one monocytic (U937) leukemia, one chronic myelogenous leukemia (sensitive K562S; multichemoresistant K562R) and normal human skin fibroblasts were compared for their capacity of staining with rhodamine 123 (Rh 123) and their kinetics of dye exclusion. Cells were exposed for 30 min to 10 g/ml of Rh 123 in culture medium; fluorescence intensity was measured by flow cytometry immediately or 1, 2, 3 and 4 h after staining. The highest fluorescence intensity was observed in carcinoma cell lines; there was no incorporation in multichemoresistant K562R cells. Exclusion of Rh 123 was evaluated from 0 to 4 h, both by flow cytometry and by fluorimetry. Fluorescence intensity measured by flow cytometry decreased slightly in carcinoma and leukemia cells and rapidly in fibroblasts. In all cell lines Rh 123 exclusion was inhibited by 40 mol/L verapamil and 5 mmol/L probenecid. Thus, incorporation and exclusion of Rh 123 allows distinction between normal and tumoral cells; moreover, inhibition of exclusion by verapamil and probenecid favors the involvement of active cell membrane mechanisms in the exclusion process.Abbreviations PBS phosphate-buffered saline - Rh 123 rhodamine 123  相似文献   

15.
Mitochondria in cells ofCatharanthus roseus (L.) G. Don in synchronous cell division cultures were observed by double staining using fluorescence microscopy. The cells were stained with 4′-6-diamidino-2-phenylindole (DAPI) first and subsequently stained with rhodamine 123 (r-123). Immediately after staining with r-123, yellowishgreen, elongated and moving mitochondria were observed upon excitation at 485 nm. When the excitation filters were replaced by a UV filter (360 nm), 1 to 7 mitochondrial nucleoids were visible in each mitochondrion in the same field. Changes in the lengths of mitochondria during the cell cycle obtained from the observations under fluorescence microscopy by this staining method suggest the occurrence of multiplication of mitochondria concurrent with the cell cycle ofC. roseus.  相似文献   

16.
Antitubulin antibody was used as an immunofluorescent and immunoelectron microscopic probe to localize tubulin in components of the mitotic apparatus of rat kangaroo (strain PtK1) cells in vitro. In addition to the detection of tubulin in the spindle microtubules and centrioles, other structures were found to display specific staining including kinetochores, amorphous pericentriolar material and small virus-like particles associated with the centrioles. The kinetochores consisted of a densely stained outer layer about 400 Å thick which is separated from an inner layer of the same dimension by a lightly staining middle layer. Microtubules were primarily associated with the outermost plate of the kinetochore but tubulin was uniformly distributed in both outer and inner plates. Colcemid treatment prevented the assembly of spindle microtubules and resulted in specific alterations of the kinetochore but failed to diminish the staining of the kinetochores. These observations suggest that tubulin molecules may comprise an important structural component of the kinetochore.  相似文献   

17.
Analyzed in this study is the organization of mitotic spindle poles in CHO-K1 cells dividing after treatment with etoposide (1 h, 25 μM). At various periods after the treatment, we studied the following: (1) the distribution of γ-tubulin in mitotic cells by immunofluorescent staining, (2) the level of post-translational modification of α-tubulin in spindle microtubules by immunoelectron microscopy, and (3) the ultrastructure of mitotic apparatus poles by standard electron microscopy. 48 h after the addition of etoposide, disturbances in the ultrastructure of mitotic spindle poles were observed in etoposide-treated CHO-K1 cells with both bipolar and with multipolar mitotic apparatuses. The increased number of centrioles was unevenly distributed between the mitotic spindle poles; some centrioles did not take an obvious part in the mitotic spindle organization and differed in their number of outgrowing microtubules. Most centrioles were without fibrillar halos. Immunoelectron microscopy showed the differences in the staining of the poles of a multipolar spindle within one cell with antibodies to tyrosinated α-tubulin, whereas the staining of cells with antibodies to acetylated α-tubulin did not reveal such differences. Immunofluorescence staining for γ-tubulin also indicated differing organizations of poles in the same spindle. Our data findings provided the first evidence that the pattern of immunostaining and ultrastructure of mitotic apparatus poles can differ in cells dividing at various time periods after the action of etoposide.  相似文献   

18.
Centrioles in the cell cycle. I. Epithelial cells   总被引:20,自引:14,他引:6       下载免费PDF全文
A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.  相似文献   

19.
Maize actin-depolymerizing factor (ADF) binds both monomeric and filamentous actin and increases actin dynamics in vitro. To test its effects in vivo, recombinant pollen ADF1 was expressed in bacteria and microinjected into Tradescantia stamen hair cells. Initially, all cytoplasmic streaming ceased and the central, longitudinal transvacuolar strands were disrupted. After 20–45 min, streaming resumed but in the form of conspicuous transverse pathways of movement in the cortex. Staining the actin filaments by a second injection of fluorescein-conjugated phalloidin showed that the longitudinal actin cables seen in controls had been replaced by a thickening of the transverse cortical arrays, whose orientation matched the new pattern of streaming. Microinjection of rhodamine–tubulin confirmed that the microtubules also formed a transverse cortical array and it is suggested that the spatial cues for re-modelling the actin after ADF1 injection may be provided by the microtubular system.  相似文献   

20.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca(2+)-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号