首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lymphocyte function-associated molecule 1 (LFA-1, CD11a/CD18) is an integrin that mediates adhesion of immune cells by interaction with two members of the Ig superfamily, ICAM-1 and ICAM-2. LFA-1 consists of an alpha subunit (Mr = 180,000) and a beta subunit (Mr = 95,000). We report here the isolation and expression of the murine alpha subunit cDNA (GenBank accession no. M60778). The deduced sequence comprises a 1061 amino acid extracellular domain, a 29 amino acid transmembrane region, and a 50 amino acid cytoplasmic domain. It has a 72% amino acid identity with its human counterpart and 34% identity with the murine Mac-1 alpha subunit. The murine LFA-1 alpha subunit could be expressed on the cell surface of a fibroblastoid cell line, COS, by cotransfection with either the human or murine beta subunit cDNA.  相似文献   

2.
CD73 is a GPI-anchored lymphocyte adhesion molecule possessing an ecto-5'-nucleotidase enzyme activity. In this work, we show that engagement of lymphocyte CD73 increases lymphocyte binding to cultured endothelial cells (EC) in an LFA-1-dependent fashion. Engagement of CD73 by an anti-CD73 mAb 4G4 increases the adhesion of lymphocytes to cultured EC by about 80% compared with that of lymphocytes treated with a negative control Ab, and the increased adhesion can be blocked by an anti-CD18 mAb. The CD73-regulated increase in lymphocyte adhesion is not due to a conformational change leading to high-affinity LFA-1 receptors as assayed using mAb 24 against an activation-induced epitope of the molecule. Instead, CD73 engagement induces clustering of LFA-1 that is inhibitable by calpeptin, indicating involvement of Ca(2+)-dependent activation of a calpain-like enzyme in this process. In conclusion, the results shown here demonstrate that CD73 regulates the avidity of LFA-1 by clustering. This indicates a previously undescribed role for CD73 in controlling the poorly characterized activation step in the multistep cascade of lymphocyte extravasation. Moreover, these results suggest that in physiological conditions the activation step may result in clustering of LFA-1 rather than in an affinity change of the molecule.  相似文献   

3.
Adhesion of lymphocytes to vascular endothelium is the first event in the passage of lymphocytes into a chronic inflammatory reaction. To investigate molecular mechanisms of T-EC adhesion, monoclonal antibodies (Mab) against T cell surface antigens have been tested for inhibition of binding. Baseline and phorbol ester-stimulated adhesion were strongly inhibited by either Mab 60.3 (reactive with the beta-chain of the LFA-1, OKM1, and p150,95 molecules) or by Mab TS 1/22 (specific for the alpha-chain of LFA-1). Although the increased binding of phorbol ester-stimulated lymphocytes was inhibited by anti-LFA-1 antibody, there was no increased expression of LFA-1 on phorbol ester-stimulated T cells, as determined by FACS analysis. Maximal inhibition of unstimulated and phorbol ester-stimulated T-EC adhesion was seen at Mab concentrations of 1 microgram/ml. In contrast, LPS- and IL 1-enhanced T-EC adhesion were only weakly inhibited by these antibodies. Mab 60.3 and TS 1/22 did not stain either unstimulated EC or LPS- or IL 1-stimulated EC, as measured by FACS analysis; moreover, preincubation of EC alone with these antibodies did not lead to inhibition of T-EC binding. Adhesion was not affected by Mab against the sheep erythrocyte receptor (LFA-2), a nonpolymorphic HLA class 1 framework antigen, or against LFA-3, the alpha-chain of OKM1, or the alpha-chain of p150,95. These results suggest that the mechanism of binding of lymphocytes to unstimulated endothelium differs from that to stimulated endothelium. LFA-1 appears to be an important adhesion-related molecule for binding to unstimulated endothelium. However, the increased lymphocyte adhesion to IL 1- or LPS-stimulated EC observed in these experiments appears to be relatively independent of LFA-1. The increased adhesion to stimulated EC could be due either to an increase in the avidity or the density of the EC receptor molecules ordinarily involved in unstimulated T-EC binding or to the formation of alternative receptors on the stimulated EC that are not present on unstimulated cells.  相似文献   

4.
The leukocyte function-associated molecule-1 (LFA-1) plays a key role in cell adhesion processes between cells of the immune system. We investigated the mechanism that may regulate LFA-1-ligand interactions, which result in cell-cell adhesion. To this end we employed an intriguing anti-LFA-1 alpha mAb (NKI-L16), capable of inducing rather than inhibiting cell adhesion. Aggregation induced by NKI-L16 or Fab fragments thereof is not the result of signals transmitted through LFA-1. The antibody was found to recognize a unique Ca2(+)-dependent activation epitope of LFA-1, which is essentially absent on resting lymphocytes, but becomes induced upon in vitro culture. Expression of this epitope correlates well with the capacity of cells to rapidly aggregate upon stimulation by PMA or through the TCR/CD3 complex, indicating that expression of the NKI-L16 epitope is essential for LFA-1 to mediate adhesion. However, expression of the NKI-L16 epitope in itself is not sufficient for cell binding since cloned T lymphocytes express the NKI-L16 epitope constitutively at high levels, but do not aggregate spontaneously. Based on these observations we propose the existence of three distinct forms of LFA-1: (a) an inactive form, which does not, or only partially exposes the NKI-L16 epitope, found on resting cells; (b) an intermediate, NKI-L16+ form, expressed by mature or previously activated cells; and (c) an active (NKI-L16+) form of LFA-1, capable of high affinity ligand binding, obtained after specific triggering of a lymphocyte through the TCR/CD3 complex, by PMA, or by binding of NKI-L16 antibodies.  相似文献   

5.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

6.
The functional activity of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes can be regulated by T-cell receptor (TCR) stimulation and pharmacologic agents. It was of interest to determine if functionally active LFA-1 could be reconstituted on a nonhematopoietic, LFA-1-negative cell line. We report the expression of LFA-1 and diethylaminoethyl (DEAE) Mac-1 alpha beta heterodimers on the cell surface of a fibroblastoid cell line, COS, by DEAE dextran cotransfection of the alpha and beta subunit cDNAs. Immunoprecipitation studies demonstrated that the alpha and beta subunit was expressed in heterodimers. The alpha or beta subunit was expressed at lower levels after transfection with the alpha or beta subunit cDNA alone. Cotransfection of the alpha and beta subunit cDNAs, but not transfection of alpha or beta alone, was sufficient to reconstitute intercellular adhesion molecule-1 (ICAM-1) binding activity. Consistent with this observation, LFA-1 on the fibroblastoid cells possesses the activation epitope defined by the L16 monoclonal antibody (mAb). This epitope marks the conversion of LFA-1 from the low to high avidity state on peripheral blood T lymphocytes (PBLs) and is constitutively present on activated cell lines. In contrast to LFA-1 on leukocytes, the functional activity of LFA-1 on fibroblastoid cells was not influenced by phorbol ester treatment. Furthermore, the use of agents that interfere with intracellular signaling, a protein kinase C inhibitor, cAMP analogue, or the combination of a phosphodiesterase inhibitor and adenyl cyclase activator, did not affect the binding of COS cells expressing LFA-1 to purified ICAM-1.  相似文献   

7.
In those integrins that contain it, the I domain is a major ligand recognition site. The I domain is inserted between beta-sheets 2 and 3 of the predicted beta-propeller domain of the integrin alpha subunit. We deleted the I domain from the integrin alpha(M) and alpha(L) subunits to give I-less Mac-1 and lymphocyte function-associated antigen-1 (LFA-1), respectively. The I-less alpha(M) and alpha(L) subunits were expressed in association with the wild-type beta(2) subunit on the surface of transfected cells and bound to all the monoclonal antibodies mapped to the putative beta-propeller and C-terminal regions of the alpha(M) and alpha(L) subunits, suggesting that the folding of these domains is independent of the I domain. I-less Mac-1 bound to the ligands iC3b and factor X, but this binding was reduced compared with wild-type Mac-1. In contrast, I-less Mac-1 did not bind to fibrinogen or denatured bovine serum albumin. Binding to iC3b and factor X by I-less Mac-1 was inhibited by the function-blocking antibody CBRM1/32, which binds to the beta-propeller domain of the alpha(M) subunit. I-less LFA-1 did not bind its ligands intercellular adhesion molecule-1 and -3. Thus, the I domain is not essential for the folding, heterodimer formation, and surface expression of Mac-1 and LFA-1 and is required for binding to some ligands, but not others.  相似文献   

8.
The lymphocyte function-associated antigen-1 (LFA-1) binding of a unique class of small-molecule antagonists as represented by compound 3 was analyzed in comparison to that of soluble intercellular adhesion molecule-1 (sICAM-1) and A-286982, which respectively define direct and allosteric competitive binding sites within LFA-1's inserted (I) domain. All three molecules antagonized LFA-1 binding to ICAM-1-Immunoglobulin G fusion (ICAM-1-Ig) in a competition ELISA, but only compound 3 and sICAM-1 inhibited the binding of a fluorescein-labeled analog of compound 3 to LFA-1. Compound 3 and sICAM-1 displayed classical direct competitive binding behavior with ICAM-1. Their antagonism of LFA-1 was surmountable by both ICAM-1-Ig and a fluorescein-labeled compound 3 analog. The competition of both sICAM-1 and compound 3 with ICAM-1-Ig for LFA-1 resulted in equivalent and linear Schild plots with slopes of 1.24 and 1.26, respectively. Cross-linking studies with a photoactivated analog of compound 3 localized the high-affinity small-molecule binding site to the N-terminal 507 amino acid segment of the alpha chain of LFA-1, a region that includes the I domain. In addition, cells transfected with a variant of LFA-1 lacking this I domain showed no significant binding of a fluorescein-labeled analog of compound 3 or ICAM-1-Ig. These results demonstrate that compound 3 inhibits the LFA-1/ICAM-1 binding interaction in a directly competitive manner by binding to a high-affinity site on LFA-1. This binding site overlaps with the ICAM-1 binding site on the alpha subunit of LFA-1, which has previously been localized to the I domain.  相似文献   

9.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

10.
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.  相似文献   

11.
Lymphocyte recruitment to sites of inflammation involves a bidirectional series of cues between the endothelial cell (EC) and the leukocyte that culminate in lymphocyte migration into the tissue. Remodeling of the EC F-actin cytoskeleton has been observed after leukocyte adhesion, but the signals to the EC remain poorly defined. We studied the dependence of peripheral blood lymphocyte transendothelial migration (TEM) through an EC monolayer in vitro on EC phosphatidylinositol 3-kinase (PI 3-kinase) activity. Lymphocytes were perfused over cytokine-activated EC using a parallel-plate laminar flow chamber. Inhibition of EC PI 3-kinase activity using LY-294002 or wortmannin decreased lymphocyte TEM (48 +/- 6 or 34 +/- 7%, respectively, vs. control; mean +/- SE; P < 0.05). Similarly, EC knockdown of the p85alpha regulatory subunit of PI 3-kinase decreased lymphocyte transmigration. Treatment of EC with jasplakinolide to inhibit EC F-actin remodeling also decreased lymphocyte TEM to 24 +/- 10% vs. control (P < 0.05). EC PI 3-kinase inhibition did not change the strength of lymphocyte adhesion to the EC or formation of the EC "docking structure" after intercellular adhesion molecule-1 ligation, whereas this was inhibited by jasplakinolide treatment. A similar fraction of lymphocytes migrated on control or LY-294002-treated EC and localized to interendothelial junctions. However, lymphocytes failed to extend processes below the level of vascular endothelial (VE)-cadherin on LY-294002-treated EC. Together these observations indicate that EC PI 3-kinase activity and F-actin remodeling are required during lymphocyte diapedesis and identify a PI 3-kinase-dependent step following initial separation of the VE-cadherin barrier.  相似文献   

12.
The beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) is a conformationally flexible alpha/beta heterodimeric receptor, which is expressed on the surface of all leukocytes. LFA-1 mediates cell adhesion crucial for normal immune and inflammatory responses. Intracellular signals or cations are required to convert LFA-1 from a nonligand binding to a ligand binding state. Here we investigated the effect of small molecule inhibitors on LFA-1 by monitoring the binding of monoclonal antibodies mapped to different receptor domains. The inhibitors were found to not only induce epitope changes in the I domain of the alpha(L) chain but also in the I-like domain of the beta(2) chain depending on the individual chemical structure of the inhibitor and its binding site. For the first time, we provide strong evidence that the I-like domain represents a target for allosteric LFA-1 inhibition similar to the well established regulatory L-site on the I domain of LFA-1. Moreover, the antibody binding patterns observed in the presence of the various inhibitors establish a conformational interaction between the LFA-1 I domain and the I-like domain in the native receptor that is formed upon activation. Differentially targeting the binding sites of the inhibitors, the L-site and the I-like domain, may open new avenues for highly specific therapeutic intervention in diseases where integrins play a pathophysiological role.  相似文献   

13.
Human cytotoxic T lymphocyte clones form conjugates with both antigen-positive and antigen-negative lymphoblastoid cells. Conjugates with antigen-negative targets form as rapidly, and are almost as frequent, as those with antigen-positive targets; both types are strong. Monoclonal antibodies against lymphocyte function-associated antigen (LFA)-1, CD2, and LFA-3 (or their Fab fragments) each consistently inhibit conjugate formation, but only partially; mixes of alpha LFA-1 with either CD2 monoclonal antibodies or alpha LFA-3 cause complete inhibition. Our previous studies have demonstrated two distinct pathways of antigen-independent conjugate (AIC) formation, one involving LFA-1 and the other involving CD2/LFA-3. The present studies showing supra-additive inhibition with mixes of Fab indicate that at least a major fraction of the conjugates involve T cells which utilize both pathways. Preincubation studies (and restricted expression for CD2) demonstrate that in the CD2/LFA-3 pathway, CD2 is critical on the effector and LFA-3 on the target and that in the LFA-1 pathway, LFA-1 is critical on the effector. Analysis of conjugate formation by primary allosensitized T cells confirms the critical findings made with T cell clones. Among a panel of antigen-negative "target" cell lines tested, there is wide variation in the number of AIC formed with cytotoxic T lymphocyte clones; this variation correlates partially with differences in level of expression of LFA-3. Both pathways of adhesion are utilized in AIC formation with all five targets tested, but there was variation between targets in the relative contribution by each pathway. Studies of inhibition of lysis (rather than conjugate formation) support the relevance of the two-pathway model to the lytic process as a whole. These studies demonstrate the general involvement of two pathways of adhesion in human T cell interactions: one involving T cell LFA-1 and the other involving T cell CD2 binding to target cell LFA-3.  相似文献   

14.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

15.
The effect of lengthening the distance in an adhesion molecule between the receptor binding site and the membrane anchor was studied by inserting four Ig-like domains into the two Ig domain lymphocyte function-associated antigen 3 (LFA-3) molecule. The extended molecule expressed in Chinese hamster ovary (CHO) cells bound to CD2 on T lymphocytes 4- to 20-fold more efficiently than the wild-type molecule at 4 degrees C. Treatment of the CHO clones with neuraminidase to remove sialic acid, or with deoxymannojirimycin to reduce the bulk of N-linked glycosylation, showed that adhesion to both the wild-type and the chimeric LFA-3 molecules was under the influence of cell-cell repulsive forces to a similar extent and that these treatments had less effect than lengthening LFA-3. At higher temperatures, such as 22 and 37 degrees C, the efficiency of binding to the wild-type LFA-3 increased to levels comparable with binding to extended LFA-3. Our results suggest that more distal locations of the adhesive binding site from the cell membrane anchor increase the efficiency of cell-cell adhesion by enhancing the frequency of receptor encounter with ligand and that more proximal locations of the adhesive binding site can provide efficient cell-cell adhesion at physiological temperatures.  相似文献   

16.
To analyze the binding requirements of LFA-1 for its two most homologous ligands, ICAM-1 and ICAM-3, we compared the effects of various LFA-1 activation regimes and a panel of anti-LFA-1 mAbs in T cell binding assays to ICAM-1 or ICAM-3 coated on plastic. These studies demonstrated that T cell binding to ICAM-3 was inducible both from the exterior of the cell by Mn2+ and from the interior by an agonist of the "inside-out" signaling pathway. T cells bound both ICAM ligands with comparable avidity. A screen of 29 anti-LFA-1 mAbs led to the identification of two mAbs specific for the alpha subunit of LFA-1 which selectively blocked adhesion of T cells to ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 and 122.2A5, exhibited identical blocking properties in a more defined adhesion assay using LFA-1 transfected COS cells binding to immobilized ligand. Blocking was not due to a steric interference between anti-LFA-1 mAbs and N-linked carbohydrate residues present on ICAM-3 but not ICAM-1. The epitopes of mAbs YTH81.5 and 122.2A5 were shown to map to the I domain of the LFA-1 alpha subunit. A third I domain mAb, MEM-83, has been previously reported to uniquely activate LFA-1 to bind ICAM-1 (Landis, R. C., R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 120:1519-1527). We now show that mAb MEM-83 is not able to stimulate binding of T cells to ICAM-3 over a wide concentration range. Failure to induce ICAM-3 binding by mAb MEM-83 was not due to a blockade of the ICAM-3 binding site on LFA-1. This study has demonstrated that two sets of functionally distinct mAbs recognizing epitopes in the I domain of LFA-1 are able to exert differential effects on the binding of LFA-1 to its ligands ICAM-1, and ICAM-3. These results suggest for the first time that LFA-1 is capable of binding these two highly homologous ligands in a selective manner and that the I domain plays a role in this process.  相似文献   

17.
We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes. Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-1alpha (SDF-1alpha) resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-activated kinase (ERK) but not c-Jun NH(2)-terminal kinase or p38 kinase, and phosphorylation of Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms of H-Ras, respectively, while N17 H-Ras abrogated SDF-1alpha-induced Akt phosphorylation. SDF-1alpha triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.Ig, which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial chemotaxis but not VLA-4-dependent transmigration induced by SDF-1alpha. Analysis of the mutant Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphorylation, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1alpha, whereas inhibition of mitogen-activated protein kinase kinase impaired the subsequent down-regulation and blocking both pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail to abolish LFA-1 regulation and transendothelial migration induced by SDF-1alpha in leukocytes, establishing a complex and bimodal involvement of H-Ras.  相似文献   

18.
Pertussis toxin treatment in macaques inhibits lymphocyte extravasation from the blood and leads to transient lymphocytosis and leukocytosis. We examined lymphocyte adhesion molecules known to be involved in the extravasation process to find possible mechanisms for the effects of pertussis toxin treatment. The two subunits of LFA-1, CD11a and CD18, showed decreased surface expression on lymphocytes from pertussis toxin treated animals compared to untreated animals. The adhesion molecule CD44, and the alpha subunit of the integrin VLA-4 (CD49d) were not decreased by pertussis toxin treatment. Lower surface expression of CD11a and CD18 was observed on all lymphocyte subsets and was correlated inversely with the extent of lymphocytosis. The magnitude of lymphocytosis after pertussis toxin treatment was higher in SIV-infected macaques than in uninfected animals. However, changes in LFA-1 levels were similar in both groups. These data show that LFA-1 surface levels are affected by pertussis toxin in vivo and this change may account in part, for the ability of pertussis toxin to induce lymphocytosis.  相似文献   

19.
Two-way signalling through the LFA-1 lymphocyte adhesion receptor   总被引:4,自引:0,他引:4  
T lymphocyte recognition of foreign antigens and migration throughout the body require the regulated adhesion of lymphocytes to diverse types of cells and to the extracellular matrix. The lymphocyte adhesion 'receptor' LFA-1, a member of the integrin family, interacts with ICAM-1 and other counter-receptors to mediate adhesion. The LFA-1/ICAM-1 interaction is regulated by signals transmitted from the cytoplasm to the extracellular space. Conversely, LFA-1 transmits signals from the extracellular space to the cytoplasm to regulate T lymphocyte activation. The observed properties of LFA-1 and related adhesion 'receptors' are incorporated into a general model for adhesion during immune surveillance and recognition of foreign antigens.  相似文献   

20.
VLA-4 and LFA-1 are the major vascular integrins expressed on circulating lymphocytes. Previous studies suggested that intact cholesterol rafts are required for integrin adhesiveness in different leukocytes. We found the alpha(4) integrins VLA-4 and alpha(4)beta(7) as well as the LFA-1 integrin to be excluded from rafts of human peripheral blood lymphocytes. Disruption of cholesterol rafts with the chelator methyl-beta-cyclodextrin did not affect the ability of these lymphocyte integrins to generate high avidity to their respective endothelial ligands and to promote lymphocyte rolling and arrest on inflamed endothelium under shear flow. In contrast, cholesterol extraction abrogated rapid chemokine triggering of alpha(4)-integrin-dependent peripheral blood lymphocytes adhesion, a process tightly regulated by G(i)-protein activation of G protein-coupled chemokine receptors (GPCR). Strikingly, stimulation of LFA-1 avidity to intercellular adhesion molecule 1 (ICAM-1) by the same chemokines, although G(i)-dependent, was insensitive to raft disruption. Our results suggest that alpha(4) but not LFA-1 integrin avidity stimulation by chemokines involves rapid chemokine-induced GPCR rearrangement that takes place at cholesterol raft platforms upstream to G(i) signaling. Our results provide the first evidence that a particular chemokine/GPCR pair can activate different integrins on the same cell using distinct G(i) protein-associated machineries segregated within defined membrane compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号