首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid modification of tapioca starch earlier reported to increase the mechanical strength of tablets. The development of ordered structure (double helices) of these starches was monitored after equilibrating at 0.90 aw (25 °C) using 13C CP/MAS NMR and X-ray diffraction. As the hydrolysis time increased, the intensity of the resonance for C1 and C4 amorphous fractions decreased while that for C1 and C4 double helix fractions increased. Relative crystallinity (%) obtained from 13C CP/MAS NMR and X-ray diffraction methods both increased sharply initially and then levelled off with hydrolysis time. The initial increase in relative double helix content and crystallinity was due to a hydrolytic destruction in the amorphous domain, retrogradation of the partially hydrolyzed amylose and crystallization of free amylopectin double helices. After 192 h, these two parameters were not significantly different (=0.05) indicating that the double helices that were not arranged into crystalline regions either had been hydrolyzed or crystallized.  相似文献   

2.
Palmitic and lauric acid complexes with amylose were studied by solid state methods: 13C CP/MAS NMR, deuterium NMR, X-ray powder diffraction and differential scanning calorimetry (DSC). The crystalline amylose complexes were found to be in a V-type sixfold single chain helix. The melting points of the complexes were over 100°C, at least 40–50°C higher than the melting points of the free fatty acids. CP/MAS 13C NMR spectra revealed two resonance peaks at 33.6 and 32.4 ppm for the palmitic acid, which were assigned as free and complexed fatty acid, respectively. A single resonance peak at 32.4 ppm was found for the lauric acid and assigned to the complex. The chemical shift of 32.4 ppm for the complexed fatty acids suggests a combined trans and gauche conformation for the fatty acid chain in the complex. T1 relaxation measurements on the two palmitic acid resonances show different behavior: a very slow relaxation for the 33.6 ppm and a much faster relaxation (1.2 s) for the 32.4 ppm resonances. The latter was similar to the relaxation of the single resonance of the lauric acid (1.1 s). Temperature dependent deuterium spectra of the amylose–lauric acid and amylose–palmitic acid complexes suggest a complete complexation for the amylose–lauric acid, whereas the amylose–palmitic acid complex is partially disassociated by the thermal treatment. Based on the overall data, a partially disordered model is proposed: an imperfect helix with the fatty acid partly inside and partly out, depending on crystallization conditions and the necessity of placing the carboxyl head outside the V-helix.  相似文献   

3.
Seven wheat straw cellulose preparations were isolated by a two-stage acidic organosolv treatment followed by cyanamide activated hydrogen peroxide bleaching. The effects of concentration of acetic and formic acids on the yield of cellulose and degradation of lignin and non-cellulose polysaccharides were investigated. Organic acids were more effective than alcohols on the degradation of lignin and hemicelluloses. Formic acid/acetic acid/water (30/60/10, v/v/v) system was found to be the most effective in delignification and removal of non-cellulose polysaccharides from the straw and did not have any undesirable effects on cellulose properties such as its intrinsic viscosity. In this case, the treatment removed 94.1% of the original lignin and 76.5% of the original hemicelluloses using 0.1% HCl as a catalyst at 85 °C for 4 h. Cyanamide activated hydrogen peroxide bleaching degraded substantial amounts of residual hemicelluloses and lignin, produced the cellulose samples having a relatively high purity. Under a best condition, a cellulose relatively free of lignin (0.7%) and with intrinsic viscosity of 393 ml g−1 and favourable molar mass (213,940 g mol−1) was obtained. Both unbleached and bleached cellulose preparations were further characterised by FT-IR and CP/MAS 13C NMR spectroscopy, and thermal stability.  相似文献   

4.
Carbon isotope ratios (13C/12C) were measured for the leaves of the seagrass Thalassia testudinum Banks ex König and carbonates of shells collected at the seagrass beds from seven sites along the coast of southern Florida, U.S.A. The δ13C values of seagrass leaves ranged from −7.3 to −16.3‰ among different study sites, with a significantly lower mean value for seagrass leaves from those sites near mangrove forests (−12.8 ± 1.1‰) than those far from mangrove forests (−8.3 ± 0.9‰; P < 0.05). Furthermore, seagrass leaves from a shallow water area had significantly lower δ13C values than those found in a deep water area (P < 0.01). There was no significant variation in δ13C values between young and mature leaves (P = 0.59) or between the tip and base of a leaf blade (P = 0.46). Carbonates of shells also showed a significantly lower mean δ13C value in the mangrove areas (−2.3 ± 0.6‰) than in the non-mangrove areas (0.6 ± 0.3‰; P <0.025). In addition, the δ13C values of seagrass leaves were significantly correlated with those of shell carbonates (δ13C seagrass leaf = −9.1 + 1.3δ13C shell carbonate (R2 = 0.83, P < 0.01)). These results indicated that the input of carbon dioxide from the mineralization of mangrove detritus caused the variation in carbon isotope ratios of seagrass leaves among different sites in this study.  相似文献   

5.
Pure p-toluenesulfonyl (tosyl) starch with an insignificant formation of chlorodeoxy groups was prepared by reacting starch dissolved in the solvent system N,N-dimethyl acetamide in combination with LiCl. Interestingly, the viscosity of the starch dissolved in the solvent system increases with the increasing amount of LiCl. The tosyl starch samples obtained were characterized by means of elemental analysis, FITR and 13C NMR spectroscopy. The degree of substitution (DSTos) of the products can be controlled in range from 0.4 to 2.0 by adjusting the molar ratio of tosyl chloride per anhydroglucose unit up to 6.0 mol/mol. The tosyl starch samples are readily soluble in various organic solvents. As revealed by means of 13C NMR analysis as well as by analysis of the corresponding 6-iodo-6-deoxy derivatives, a faster tosylation at position 2 than at positions 6 and 3 takes place. The thermal stability of tosyl starch increases with increasing DSTos and degradation starts at 166°C for the sample of DSTos of 0.61. The remaining OH groups of tosyl starch are reactive and can be additionally modified by acetylation reactions.  相似文献   

6.
DNA-based stable isotope probing (SIP) is a novel technique for the identification of organisms actively assimilating isotopically labeled compounds. Herein, we define the limitations to using 15N-labeled substrates for SIP and propose modifications to compensate for these shortcomings. Changes in DNA buoyant density (BD) resulting from 15N incorporation were determined using cultures of disparate GC content (Escherichia coli and Micrococcus luteus). Incorporation of 15N into DNA increased BD by 0.015±0.002 g mL−1 for E. coli and 0.013±0.002 g mL−1 for M. luteus. The DNA BD shift was greatly increased (0.045 g mL−1) when dual isotope (13C plus 15N) labeling was employed. Despite the limited DNA BD shift following 15N enrichment, we found the use of gradient fractionation, followed by a comparison of T-RFLP profiles from fractions of labeled and control treatments, facilitated detection of enrichment in DNA samples from either cultures or soil.  相似文献   

7.
High quality antique sheets of paper have been characterized by 1H NMR relaxations and 13C CP MAS spectra. Paper can be regarded as a bicomponent material made of cellulose and water plus a small amount of organic and inorganic impurities. Semicrystalline fibrous cellulose, rich in water, is present in the I and Iβ forms. The amorphous cellulose, with a low water content, contains a higher amount of paramagnetic impurities and it is characterized by quite short 1H spin-lattice relaxations and by 113C resonances with noticeable chemical shifts. Ad hoc tailored pulse sequences are able to produce 13C CP MAS spectra in which only the amorphous content of paper is clearly observed. It is shown that water is fully bound to the cellulose lattice. It also seems reasonable to formulate the hypothesis that a larger concentration of paramagnetic ions is located in the amorphous fraction of highly degraded paper compared with paper in good condition.  相似文献   

8.
The aim of this paper is to investigate the structures and properties of epoxidized linseed and Pongamia glabra oils (LOE/POE), their derived products—epoxy-polyols (HLOE/HPOE), epoxy-polyurethanes (EU = LOPU/POPU) and EU coatings. Changes in epoxy equivalent, iodine value, hydroxyl value and percent saturation of oil backbone in due course of epoxidation and hydroxylation reactions, were plotted as a function of time. Spectral (IR, 1H NMR and 13C NMR), physico-chemical and thermal (TGA and DSC) analyses of aforementioned resins were performed by standard methods. Physico-mechanical and chemical resistance tests reveal that coatings of LOPUs perform better than those of POPUs. It was found that properties of oil epoxy-polyurethane coatings are mainly governed by: (i) fatty acid composition and nature of starting oils, (ii) extent of epoxidation, (iii) number and location of hydroxyls and residual double bonds in the final product and (iv) the presence of long dangling chains. PO, HLOE and LOPUs exhibit good antibacterial activity against Escherichia coli at very small MIC. These EU systems can be safely employed unto 220 °C.  相似文献   

9.
The electron irradiation effect on scleroglucans was investigated using different energy doses. Electron spin resonance spectra revealed radicals that were stable for several days. 1H NMR, 13C NMR and Raman spectra indicated no differences in chemical backbone structure due to irradiation. In contrast, lower viscosities of aqueous solutions were received at higher energy doses. This was caused by polymer degradation. The irradiation also decreased the weight average molar masses observed by gel permeation chromatography and multi-angle light scattering. Beginning from raw materials exceeding 4 · 10Da, a number of main chain scissions of approximately 0.3 · 10−7 mol J−1 was found. But for one scleroglucan quality the scission number decreased with higher doses. In addition, the characterization via asymmetrical flow field-flow fractionation proved the presence of low and high molar mass fractions. The electron irradiation led to a preferred scission of the high molar mass chains and increased the lower molar mass fraction. Due to this effect, the broadness of the molar mass distribution decreased.  相似文献   

10.
Crystal structures of Co2(CO)6(dppm) (1) and Co2(CO)5(CHCO2Et)(dppm) (2) (dppm = Ph2PCH2PPh2) show asymmetry with respect to the orientation of the phenyl groups in 1 and owing to the bridging ethoxycarbonylcarbene ligand in 2. The effect of this asymmetry was recognized in the solid-state 31P NMR spectra of 1 and 2 and in the solid-state and solution 13C NMR spectra of 2 as well, but not in the solid-state and solution 13C NMR spectra of 1. In CH2Cl2 solution under an atmosphere of 13CO, the CO ligands of both complexes exchange with 13CO. The overall rate of 13CO exchange at 10 °C was found to be kobs = 0.107 × 10−3 s−1 for 1 and kobs = 0.243 × 10−3 s−1 for 2. Two-layered ONIOM(B3LYP/6-31G(d):LSDA/LANL2MB) studies revealed fluxional behavior of 1 with rather small barriers of activation of the rearrangements. Four possible isomers have been computed for 2, close to each other energetically.  相似文献   

11.
The organisation of sugar beet and potato cell walls was studied using alkaline extractions following a response surface methodology, simultaneously with solid-state 13C NMR spectroscopy. The influence of two extraction parameters: NaOH concentration (0.05, 0.275, 0.5 M) and temperature (40, 65, 90 °C) on the composition (neutral and acidic sugars) of the residues recovered was established. Treatments of increasing harshness progressively washed off non-cellulosic polysaccharides from the cell walls. Alkaline treatments applied to sugar beet cell wall material (SB-CWM) revealed the presence of diverse pectin populations. The existence of distinct pectin populations in potato cell wall material (P-CWM) was less outstanding. Solid-state 13C NMR applied to SB-CWM and P-CWM and residues after treatment by 0.275 M NaOH at 65 °C revealed two fractions of pectic arabinan and galactan side chains. One fraction was highly mobile, whereas the other one displayed restricted mobility.  相似文献   

12.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of LMW κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, succinic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 80 °C. Investigation of FT-IR spectrum of the succinylated LMW κ-carrageenan showed that a monoester derivative with succinyl group was formed when LMW κ-carrageenan reacted with succinic anhydride. The 1H and 13C NMR spectroscopy has been used to characterize the fine structure of O-succinyl derivative of the LMW κ-carrageenan. The 13C and 1H NMR chemical shifts of disaccharide unit of O-succinyl LMW κ-carrageenan have been fully assigned using 2D NMR spectroscopic techniques.  相似文献   

13.
Part of matrix polymers of flax bast fibre cell wall is tightly bound to cellulose and can not be extracted by conventional methods. To analyze these polymers, the residue, remaining after cell wall treatment with chelators and alkali, was dissolved in solution of lithium chloride in N,N-dimethylacetamide. Cellulose was precipitated by water and completely degraded by cellulase, giving the possibility to separate matrix polysaccharides, which remained in polymeric form. The obtained polymers were fractionated by gel permeation chromatography and characterized by monosaccharide analysis, staining with LM5 antibody and Yariv reagent, 1H and 13C NMR. The total yield of the polysaccharides that are tightly bound to cellulose in flax fibre, was 4.6%. The major fractions (molecular mass 100–400 kDa) were composed of galactose, accompanied by two other significant monomers, GalA and Rha, with the ratio 1.1–1.4. Composition and structure of the cellulose bound galactan permit to consider it as fragment of the high-molecular mass (2000 kDa) galactan, synthesized by the developing fibres, while forming the secondary cell wall of gelatinous type.  相似文献   

14.
Wheat straw hemicelluloses were acetylated with acetic anhydride using iodine as a novel catalyst in 1-butyl-3-methylimidzolium chloride ([C4mim]Cl) ionic liquid (IL). Acetylated hemicelluloses with yield and degree of substitution (DS) from 70.5% to 90.8% and between 0.49 and 1.53, respectively, are accessible in a complete homogeneous procedure by changing the reaction temperature, reaction duration, the dosage of catalyst, and the dosage of acetic anhydride. The preferred reaction parameters that resulted in the highest DS were follows: 20:1 reactant molar ratio, 100 °C, 30 min, 15% iodine, in which about 83% hydroxyl groups in native hemicelluloses were esterified. The structural features of the acetylated hemicelluloses were characterized by 13C NMR and FT-IR spectroscopy. The thermal stability of the acetylated hemicelluloses increased upon chemical modification. It is the first time that we have demonstrated that ILs could be used as an environmentally friendly solvent for the chemical modification of hemicelluloses.  相似文献   

15.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

16.
The P---C bond splitting reaction of Ru(OAc)2(Binap), containing 13C=O-enriched acetate, with 2 equiv. of triflic acid at 80 °C, has been studied. NMR spectroscopy (and specifically 13C NMR data) reveal that acetic anhydride and water are produced, thus explaining the end product, which may be thought of as developing due to water adding across the P---C bond. An intermediate 10 derived from attack of acetate on a P-atom is recognised. Complex 10 is shown to contain a cyclic five-membered ring, Ru---{(P---OC(Me)(=O)} fragment which develops via acetate attack on a P-atom. Crystal structures for two Ru(OAc)2(MeO---Biphep) derivatives are reported.  相似文献   

17.
Levansucrase from Microbacterium laevaniformans ATCC 15953 produced in a 3% sucrose medium was purified to homogeneity from cell-free extracts by ammonium sulfate precipitation, DEAE-Sepharose Fast Flow and Sephacryl S-100 HR chromatographies. The molecular mass of the purified enzyme was 64 kDa as measured by SDS–PAGE. The optimum pH and temperature for the levan formation were 6.0 and 30 °C, respectively. The levan-forming activity was strongly inhibited by CuSO4 and HgCl2, and moderately inhibited by ZnSO4. The enzyme synthesized a variety of fructosyl oligosaccharides from various saccharides as fructosyl acceptors. Disaccharides were more favorable fructosyl acceptors than monosaccharides. The structure of the transfer product when melibiose was used as an acceptor was determined by enzyme hydrolysis and 13C NMR spectroscopy. The chemical structure of the resulting fructosyl melibiose was identified as O-- -galactopyranosyl-(1→6)-- -glucopyranosyl-(1→2)-β- -fructofranoside. This result suggests that levansucrase from M. laevaniformans specifically transferred the fructose moiety of sucrose to the C1---OH position of the glucose residue of melibiose.  相似文献   

18.
A new room-temperature molten salt, 1:2 LiCl-ethylaluminum dichloride (LiCl-EtAlCl2, f.p. about 178 K), is examined using 13C relaxation methods at 7.05 T (−25 to + 80 °C). The methylene carbon undergoes scalar relaxation of the ‘second kind’ as it is coupled to a faster relaxing (quadrupolar) nucleus. LiCl-EtAlCl2 undergoes a significant liquid-state phase change between 5 and 15 °C as evidenced by observed changes in the relaxation properties of the methylene and methyl carbons and J(13C−27Al). The J(13C−27Al) coupling constants are 75 (− 10 to + 5 °C) and 11 Hz (15–65 °C), indicating a change in structure between 5 and 15 °C. Chemical shift anisotropies of 56 and 48 ppm are obtained for the methylene and methyl carbons in the EtAlCl2 dimer part of the 1:2 LiCl-EtAlCl2 solution.  相似文献   

19.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of the precursor tetraethoxysilane (TEOS) in the presence of polyethylene glycol (PEG) as additive. The properties of silica and their derivatives with regard to mean pore diameter, specific surface area, mean pore size, weight loss upon heating (thermogravimetric analysis, TGA) and 29Si and 13C NMR are reported. The pH optimum shifted from 7.8 to 6.7 and optimum temperature jumped from 36 to 60 °C upon enzyme encapsulation. Encapsulated lipase in presence of PEG (EN-PEG) exhibited higher stability in the range of 37–45 °C, but from 50 to 65 °C the EN-PEG was inactivated after seven cycles. Hydrolytic activity during long-term storage at room temperature decreased to 50% after 94 days. High diffusional resistance was observed for large oil concentration reducing hydrolytic effectiveness by 60% in the case of the encapsulated lipase. NMR, pore size and specific surface area data suggested an active participation of the lipase enzyme during gelling of the silica matrix. This lead to reduction of available Si–OH groups, larger pores and smaller surface area. Larger pores increase substrate diffusion that correlates well with higher hydrolytic activity of the TEOS–PEG sol–gel matrix encapsulated enzyme in comparison with other sol–gel supports.  相似文献   

20.
Gluconacetobacter hansenii PJK, a cellulose producing bacterium recently isolated from the rotten apples, produced fair amounts of the water-soluble polysaccharides (WSPS). WSPS were studied for their monosaccharides composition after acid hydrolysis, which revealed that the hydrolysates consist only of one sugar, glucuronic acid. The structure of the WSPS was investigated using various spectroscopic techniques including FT-IR, MALDI-TOF MS and 1H, and 13C NMR. These studies revealed that the product is a mixture of oligomers with the -glucuronic acid as building blocks. The possible structure of the major oligosaccharide in the mixture has been deduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号