首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural features of feruloylated arabinoxylan (feraxan) present in Zea mays L. (hybrid B 73 × Mo 17) coleoptile cell walls have been studied using a purified feraxan-dissociating enzyme (feraxanase) and an α-arabinofuranosidase. This experimental approach has demonstrated the following. (a) Feraxanase dissociated ca. 20% (dry weight basis) of the maize wall preparation. The predominant oligosaccharides enzymically liberated were allocated into seven major subfractions designated A-1 (0.8%), B-1 (1.6%), B-2 (2.4%), B-3 (4.6%), C-1 (1.0%), C-2 (4.2%), and C-3 (0.3%). Values in parentheses reflect the percentage of the wall associated with each subfraction. Subfractions represent samples enriched in different degrees of polymerization, sugar composition, linkage arrangements, and phenolic acid content. (b) B-1, B-2, and B-3 fractions are not feruloylated and have smaller molecular mass (less than 104 kilodaltons) and consist chiefly of t-arabinosyl-5-arabinosyl, 4-xylosyl, 2,4/3,4-xylosyl, and glucuronosyl residues, suggesting that these fragments constitute nonferuloylated regions of arabinoxylan. (c) C-2 and C-3 fractions contain ferulic acid (6.2% and 12.1%, respectively) and are similar to the B series in their sugar linkage arrangements but were derived from feruloylated regions. (d) Alkali treatment of the C-2 fraction decreases the molecular size of the fragment and liberates phenolic acids. The results suggest the presence of alkaline-labile links, probably diferulate bridges. (e) A-1 and C-1 fractions are larger (more than 5 × 105 kilodalton) and contain t-galactosyl-, 4-galactosyl, 2,4-rhamnosyl-residues, galacturonic acid, and the sugar linkage arrangements common to other fractions. The A-1 fraction is not feruloylated, whereas C-1 fraction contains 0.5% ferulic acid. The presence of galactose, rhamnose, and galacturonic acid suggests that pectic polymers, probably homopolygalacturonans and rhamnogalacturonans, are linked to nonferuloylated and feruloylated segments of arabinoxylans.  相似文献   

2.
Obel N  Porchia AC  Scheller HV 《Planta》2003,216(4):620-629
Incorporation of [(3)H]arabinose and [(14)C]ferulic acid into soluble and polymeric fractions from suspension-cultured wheat (Triticum aestivum L.) cells and the corresponding extracellular medium was studied. The major part of these products was identified as arabinoxylan and two proteins of 40 and 100 kDa. The time course suggests an intracellular synthesis of feruloylated arabinoxylan with feruloyl-glucose as substrate. In contrast, synthesis of feruloylated proteins appears to occur with feruloyl-CoA as precursor. Intracellular formation of ferulic acid dimers is limited to 8,5'-diferulic acid, while other dimers appear to be formed extracellularly. [(3)H]Arabinose was incorporated into polymeric material in both the cellular and in the medium fraction while [(14)C]ferulic was only found in polymers from the cellular fraction, indicating synthesis of both feruloylated and non-feruloylated arabinoxylan by the cells.  相似文献   

3.
Three novel β-xylan xylanohydrolases capable of dissociating ferulated arabinoxylan (Feraxan) from maize (Zea mays L. hybrid B73 × Mo17) coleoptile sections and two conventional β-xylan xylanohydrolases (xylanases) were purified from a Bacillus subtilis industrial enzyme preparation (Novo Ban L-120). The Feraxan-dissociating enzymes (designated as feraxanases) exhibit optimum activities between pH 6.5 and 7.0 and have common molecular weights of 45 kilodaltons as studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two xylanases exhibit their optimum activities between pH 4.5 and 6.0 and have common molecular weights of 27 kilodaltons. Feraxanases liberate oligomeric fragments, which accounted for the following percentages of walls of Zea mays coleoptile sections that had been pretreated by boiling in 80% ethanol: 76% of the ferulic acid, 96% of the arabinose, 71% of the xylose, 27% of the galactose, 50% of the uronic acid, and 4% of the glucose. Monomers, dimers, trimers, or tetramers were not found among enzyme digestion products. The enzymes hydrolyzed both Feraxan in intact cell wall and maize arabinoxylans extracted from walls by alkaline solutions but did not degrade other substrates including larch arabinoxylan and Rhodymenia xylan. Structural analyses of the fragments released by the enzymes from the maize cell wall indicated the presence of 2,4/3,4-linked-xylopyranosyl, terminal-arabinofuranosyl, 5-linked-arabinofuranosyl, 4-linked-xylopyranosyl, terminal-glucuronopyranosyl, and ferulic acid as major components. This result is consistent with the idea that most of the fragments were derived from Feraxan. Because of high enzyme specificity and substantial recovery of digestion products from maize cell walls, these new enzymes offer opportunities not only for enhanced structural analyses of cell walls but also for assistance in protoplast preparation from cereals.  相似文献   

4.
An enzyme preparation from the thermophilic fungus Humicola insolens, Ultraflo L, was able to solubilise more than half of the biomass of brewers grain and wheat bran, two agro-industrial co-products. While almost all of the ferulic acid was released in the free form, the majority of diferulates were released still attached to soluble feruloylated oligosaccharides, except for the 8,5 benzofuran form, which remained mostly in the residue. H. insolens also produced an esterase capable of releasing over 50% of p-coumaric acid present in wheat bran, but only 9% from the brewers grain. The polysaccharide content in the residues after enzyme treatment comprised mostly cellulose and arabinoxylan, which suggests that part of the arabinoxylan in these residues is inaccessible to the xylanases of H. insolens. Differences in the solubilised arabinose-to-xylose ratio coupled to high free ferulate release suggest that the structure of feruloylated arabinoxylan in barley and wheat may differ.  相似文献   

5.
Cell walls obtained from carrot disks aged for 6 days were treated with mild acid to remove the arabinosyl sidechains from the hydroxyproline residues of extensin, and subsequently digested with trypsin. The peptides in the tryptic digest were fractionated according to MW by gel filtration and further purified with Dowex 5OX2. The peptides were rich in hydroxyproline and contained small amounts of carbohydrate, especially galactose. Treatment of the glycopeptides with NaOH in the presence of Na2SO3 resulted in a considerable loss of serine residues (up to half in some fractions) and the formation of cysteic acid. Free carbohydrate, consisting mostly of galactose was released by this treatment. Treatment with NaOH in the presence of NaBH4, resulted in the release of carbohydrate sidechains which primarily contained galactitol and galactose. The data indicate that the serine-O-galactosyl linkage occurs in glycopeptides of different sizes and is most abundant in the hydroxyproline-rich glycopeptide fractions.  相似文献   

6.
Cell wall development in maize coleoptiles   总被引:16,自引:10,他引:6       下载免费PDF全文
The physical bases for enhancement of growth rates induced by auxin involve changes in cell wall structure. Changes in the chemical composition of the primary walls during maize (Zea mays L. cv WF9 × Bear 38) coleoptile development were examined to provide a framework to study the nature of auxin action. This report documents that the primary walls of maize cells vary markedly depending on developmental state; polymers synthesized and deposited in the primary wall during cell division are substantially different from those formed during cell elongation.

The embryonal coleoptile wall is comprised of mostly glucuronoarabinoxylan (GAX), xyloglucan, and polymers enriched in 5-arabinosyl linkages. During development, both GAX and xyloglucan are synthesized, but the 5-arabinosyls are not. Rapid coleoptile elongation is accompanied by synthesis of a mixed-linked glucan that is nearly absent from the embryonal wall. A GAX highly substituted with mostly terminal arabinofuranosyl units is also synthesized during elongation and, based on pulse-chase studies, exhibits turnover possibly to xylans with less substitution via loss of the arabinosyl and glucuronosyl linkages.

  相似文献   

7.
Changes in arabinoxylan content and composition during development of wheat seedlings were investigated. The cell walls isolated from the seedlings showed an increasing content of arabinoxylan during development, which could be correlated to increased activity of xylan synthase and arabinoxylan arabinosyltransferase. Arabinoxylan changed from initially having a high degree of arabinose substitution to a much lower degree of substitution. beta-Glucan was present in the walls at the early stages of development, but was actively degraded after day 4. Increased deposition of arabinoxylan did not take place until beta-glucan had been fully degraded. Ferulic and p-coumaric acid esters were present at all points but increased significantly from day 3 to 6, where lignification began. Ferulic acid dimers did not appear in the cell wall until day three and the different ferulic acid dimers varied in the course of accumulation. The ratio of ferulic acid dimers to free ferulic acid was maximal at the time when the wall had been depleted for beta-glucan, which had not yet been fully replaced by arabinoxylan. This pattern suggests a role for ferulic acid dimers in stabilizing the wall during the transition from a flexible to a more rigid structure. To investigate if the same changes could be observed within a single seedling, 7 day old seedlings were divided into four sections and the walls were analyzed. Some of the changes observed during the seedling development could also be observed within a single seedling, when analyzing the segments from the elongation zone at the base to the top of the leaf. However, the expanding region of older seedlings was much richer in hydroxycinnamates than the expanding region of younger seedlings. Diferulic acids are stabilizing the wall in the transition phase from an expanding to a mature wall. This transition can take place in different manners depending on the cell and tissue type.  相似文献   

8.
Given several promising industrial applications of ferulic acid, this study was designed to identify actinomycete strains able to release high levels of this acid from sugar beet pulp (SBP). Out of 47 strains tested, 37% were found to release free ferulic acid from the growth substrate. One strain, identified as Streptomyces tendae by 16S RNA gene sequencing, was capable of releasing 80% of the ferulic acid ester-linked to the pectin in SBP after 5 days of growth. These data suggest that some actinomycetes are able to release ferulic acid and feruloylated oligosaccharides from SBP. During growth on SBP, it seems that Streptomyces species solubilize and release feruloylated oligosaccharides by specific carbohydrase activities before de-esterification and release of free ferulic acid.  相似文献   

9.
Radiolabeled [14C]arabinoxylan from wheat meal and [14C]galactoglucomannan from red clover meal were prepared by using 14CO2 as a precursor. Twice as much mannan was mineralized than xylan after 14 days of incubation with Phlebia radiata. Low-molecular-weight phenolic compounds structurally related to lignin increased during mineralization of both hemicellulose fractions. Veratryl alcohol increased degradation of arabinoxylan by approximately 28.5%, whereas veratric acid increased it by only 9.0%. Vanillic acid and ferulic acid also stimulated degradation by 16.6% and 34.7%, respectively. Veratryl alcohol and ferulic acid increased degradation of galactoglucomannan by approximately 75%. Veratraldehyde in both cases repressed the degradation process (23.6% arabinoxylan, 43.8% galactoglucomannan). These results indicate that the degradation of hemicelluloses, e.g., xylan and mannan, by P. radiata is enhanced by addition of aromatic compounds. Journal of Industrial Microbiology & Biotechnology (2002) 28, 168–172 DOI: 10.1038/sj/jim/7000221 Received 25 July 2001/ Accepted in revised form 23 October 2001  相似文献   

10.
Naoto Shibuya 《Phytochemistry》1984,23(10):2233-2237
Ferulic acid, p-coumaric acid and diferulic acid were detected in the alkaline extract of rice endosperm cell walls. The amount of each component was estimated as 9.1, 2.5 and 0.56 mg/g cell wall, respectively. Several phenolic-carbohydrate esters were isolated from the enzymatic digest of this cell wall, which included a series of ferulic acid esters of arabinoxylan fragments and also some fractions containing a high proportion of diferulic acid.  相似文献   

11.
Indoleacetic acid at 0.017 millimolar inhibited the formation of three peroxidase isoenzymes in both soluble and wall-bound enzyme fractions of wheat coleoptile (Triticum vulgare) tissue. Hydroxyproline at 1 millimolar prevented the indoleacetic acid-induced inhibition. Indoleacetic acid oxidase activity in the soluble fraction was decreased by indoleacetic acid and was restored by hydroxyproline. Most of the indoleacetic acid oxidase activity was located in the electrophoretic zones occupied by two of the peroxidase isoenzymes influenced by indoleacetic acid and hydroxyproline. At least part of the effect of hydroxyproline on auxin-induced elongation of coleoptile tissue may be through control of auxin levels by indoleacetic acid oxidase.  相似文献   

12.
A feruloylated arabinoxylan trisaccharide inhibited IAA-stimulatedelongation of cells in rice lamina joints. The de-esterifiedcompound, an arabinoxylan trisaccharide, did not inhibit suchelongation. This is the first report that feruloylated arabinoxylanfragments are involved in the regulation of plant growth. (Received September 18, 1991; Accepted January 13, 1992)  相似文献   

13.
The inhibitory mode of action of jasmonic acid (JA) on the growth of etiolated oat (Avena sativa L. cv. Victory) coleoptile segments was studied in relation to the synthesis of cell wall polysaccharides using [14C]glucose. Exogenously applied JA significantly inhibited indoleacetic acid (IAA)-induced elongation of oat coleoptile segments and prevented the increase of the total amounts of cell wall polysaccharides in both the noncellulosic and cellulosic fractions during coleoptile growth. JA had no effect on neutral sugar compositions of hemicellulosic polysaccharides but substantially inhibited the IAA-stimulated incorporation of [14C]glucose into noncellulosic and cellulosic polysaccharides. JA-induced inhibition of growth was completely prevented by pretreating segments with 30 mm sucrose for 4 h before the addition of IAA. The endogenous levels of UDP-sugars, which are key intermediates for the synthesis of cell wall polysaccharides, were not reduced significantly by JA. Although these observations suggest that the inhibitory mode of action of JA associated with the growth of oat coleoptile segments is relevant to sugar metabolism during cell wall polysaccharide synthesis, the precise site of inhibition remains to be investigated.Abbreviations JA jasmonic acid - ABA abscisic acid - IAA indoleacetic acid - T 0 minimum stress relaxation time - TFA trifluoroacetic acid - TCA trichloroacetic acid - HPLC high-performance liquid chromatography - EtOAc ethyl acetate - TLC thin-layer chromatography - JA-Me methyl jasmonate - GLC-SIM gas-liquid chromatography-selected ion monitoring  相似文献   

14.
Auxin-induced cell elongation in oat coleoptile segments was inhibited by galactose; removal of galactose restored growth. Galactose did not appear to affect the following factors which modify cell elongation: auxin uptake, auxin metabolism, osmotic concentration of cell sap, uptake of tritium-labeled water, auxin-induced wall loosening as measured by a decrease in the minimum stress-relaxation time and auxininduced glucan degradation. Galactose markedly prevented incorporation of [14C]-glucose into cellulosic and non-cellulosic fractions of the cell wall. It was concluded that galactose inhibited auxin-induced long-term elongation of oat coleoptile segments by interfering with cell wall synthesis.  相似文献   

15.
The degradation products of water-soluble wheat arabinoxylans treated with Aspergillus niger ferulic acid esterase (FAEA-able to cleave 5,5'- and 8-O-4'-ferulic acid dimers) have been characterised by atomic force microscopy (AFM) and size exclusion chromatography. The AFM images of arabinoxylans confirmed that a small proportion ( approximately 15%) of the population of arabinoxylan molecules contain xylan-based branches attached to the xylan-based backbone. Treatment with FAEA reduced the contour length of the molecules suggesting that certain dimeric ferulic acid linkages may play a previously unconfirmed role in the elongation of arabinoxylans. Overnight treatment with FAEA led to a reduction in the density of branches suggesting that they may also be linked to the backbone through phenolic linkages.  相似文献   

16.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

17.
Commercially available enzyme preparations were screened for enzymes that have a high ability to catalyze direct ester-synthesis of ferulic acid with glycerol. Only a preparation, Pectinase PL “Amano” produced by Aspergillus niger, feruloylated glycerol under the experimental conditions. The enzyme responsible for the esterification was purified and characterized. This enzyme, called FAE-PL, was found to be quite similar to an A. niger ferulic acid esterase (FAE-III) in terms of molecular mass, pH and temperature optima, substrate specificity on synthetic substrates, and the N-terminal amino acid sequence. FAE-PL highly catalyzed direct esterification of ferulic acid and sinapinic acid with glycerol. FAE-PL could feruloylate monomeric sugars including arabinose, fructose, galactose, glucose, and xylose. We determined the suitable conditions for direct esterification of ferulic acid with glycerol to be as follows: 1% ferulic acid in the presence of 85% glycerol and 5% dimethyl sulfoxide at pH 4.0 and 50 °C. Under these conditions, 81% of ferulic acid could be converted to 1-glyceryl ferulate, which was identified by 1H-NMR. The ability of 1-glyceryl ferulate to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was higher than that of the anti-oxidant butyl hydroxytoluene.  相似文献   

18.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   

19.
The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments.  相似文献   

20.
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号