首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Unlike other domestic mammals, in which metaphase-II oocytes are ovulated, canine ovulation is characterized by the release of primary oocytes, which may take 12 to up to 36 hours. Further 60 hours are needed for maturation to secondary oocytes which then remain fertile for about 48 hours. Oestrus takes 7 to 10 days on average and may start as early as a week before ovulation. This together with the prolonged process of post-ovulatory oocyte maturation requires an according longevity of spermatozoa in the female genital tract in order to provide a population of fertile sperm when oocytes have matured to fertilizability. Therefore the distribution and viability of spermatozoa in the bitch genital tract was examined during post-ovulatory oocyte maturation. METHODS: Thirteen beagle bitches were inseminated on the day of sonographically verified ovulation with pooled semen of two beagle dogs containing one billion progressively motile spermatozoa. Ovariohysterectomy was performed two days later (group 1, n = 6) and four days later (group 2, n = 7). The oviduct and uterine horn of one side were flushed separately and the flushing's were checked for the presence of gametes. The oviducts including the utero-tubal junction and the uterine horns, both the flushed and unflushed, were histologically examined for sperm distribution. RESULTS: The total number of spermatozoa recovered by flushing was low and evaluation of viability was limited. Prophase-I oocytes were collected from oviduct flushing in group 1, whereas unfertilized metaphase-II oocytes were detected in group 2. From day 2 to day 4 after ovulation a significant decrease in the percentage of glands containing sperm (P<0.05) and a marked reduction of the mean sperm number in uterine horn glands were observed. A concomitant diminution of spermatozoa was indicated in the utero-tubal junction accompanied by a slight increase in sperm numbers in the mid oviduct. CONCLUSIONS: Oocyte maturation to metaphase-II stage is accompanied by a continuous sperm detachment and elimination in the uterine horns. Entrance of spermatozoa into the caudal oviduct seems to be steadily controlled by the utero-tubal junction thus providing a selected sperm population to be shifted towards the site of fertilization when oocyte maturation is completed.  相似文献   

2.
An alternative to conventional in vivo validation of sperm assays might be to assess the fertilization rate of multiple oocytes transferred to the oviducts of inseminated females. Increasing the number of oocytes increases the egg-sperm ratio in the oviduct under an unaltered endocrine milieu, setting the basis for picking up statistical differences between treatments in small populations. The study evaluated the model by transferring oocytes to females inseminated under conditions that are known to modify the fertilization rate in the field. The study then evaluated the use of cattle oocytes to replace goat oocytes for assessing sperm function under this model. In Experiment 1, 12 females were inseminated at estrus with either 100 or 300 million spermatozoa 20 h before transferring homologous oocytes into the oviduct ipsilateral to the ovulation point. In Experiment 2, 10 females were inseminated either once or twice; 10-20 h later, homologous oocytes were transferred into the oviduct ipsilateral to the ovulation point. In Experiment 3, 13 bilateral-ovulated females were inseminated and 20 h later goat and cattle oocytes were transferred to contralateral oviducts. Then, 16-20 h later, oocytes were flushed from the oviduct, cleaned of spermatozoa and stained to assess the fertilization rate. The fertilization rate was improved by increasing sperm numbers at insemination (P < 0.04) and by increasing the number of inseminations (P < 0.02). The results in Experiment 3 showed that fertilization rates were similar for goat and cattle oocyte (P > 0.05) and that fertilization values were highly correlated (r = 0.811, P < 0.001). Results suggest that the model can be used for in vivo validation of in vitro sperm assays by facilitating the expression of statistical differences in small number of animals. In addition, cattle oocytes can be used to replace goat oocytes to study in vivo sperm function in goats.  相似文献   

3.
The final stages of sperm maturation, fertilization, and early embryonic development occur within the oviduct and are essential for successful reproduction in mammals. Norepinephrine was previously identified in native bovine oviductal fluid and its in vitro effects on bull sperm capacitation and the acrosome reaction have been determined. It was unknown how physiological concentrations of norepinephrine influence sperm binding, fertilization, and embryo development. Therefore, the objective of this study was to determine if pre-incubating bovine spermatozoa with physiological concentrations of norepinephrine prior to insemination of bovine oocytes would improve sperm-oocyte binding, fertilization, and embryonic development in vitro. Norepinephrine, in concentrations representing those measured in bovine oviductal fluid, was used to treat bovine spermatozoa prior to insemination. Spermatozoa incubated in norepinephrine were used to inseminate bovine oocytes matured in vitro, and oocytes were evaluated for sperm binding and fertilization. Additional experiments were conducted to evaluate how early in the co-incubation period oocytes were fertilized by spermatozoa pre-incubated with norepinephrine, and to test the developmental competence of those oocytes fertilized with norepinephrine-treated sperm. Sperm binding to the zona pellucida was reduced by pre-incubation with norepinephrine. Rates of fertilization and embryo development did not increase as a result of pre-incubating spermatozoa with norepinephrine, but as early as 4h after insemination, spermatozoa treated with 20 ng/ml norepinephrine fertilized more oocytes than spermatozoa incubated in medium alone. Interestingly, this concentration of norepinephrine was found to capacitate spermatozoa in previous studies. These data suggest that oocytes fertilized by spermatozoa incubated in 20 ng/ml norepinephrine fertilize earlier in vitro than sperm pre-incubated in medium alone, and provide additional support for the role of norepinephrine in sperm capacitation and the acrosome reaction.  相似文献   

4.
In animals with internal fertilization, ovulation and female sperm storage are essential steps in reproduction. While these events are often required for successful fertilization, they remain poorly understood at the developmental and molecular levels in many species. Ovulation involves the regulated release of oocytes from the ovary. Female sperm storage consists of the movement of sperm into, maintenance within, and release from specific regions of the female reproductive tract. Both ovulation and sperm storage elicit important changes in gametes: in oocytes, ovulation can trigger changes in the egg envelopes and the resumption of meiosis; for sperm, storage is a step in their transition from being "movers" to "fertilizers." Ovulation and sperm storage both consist of timed and directed cell movements within a morphologically and chemically complex environment (the female reproductive tract), culminating with gamete fusion. We review the processes of ovulation and sperm storage for Drosophila melanogaster, whose requirements for gamete maturation and sperm storage as well as powerful molecular genetics make it an excellent model organism for study of these processes. Within the female D. melanogaster, both processes are triggered by male factors during and after mating, including sperm and seminal fluid proteins. Therefore, an interplay of male and female factors coordinates the gametes for fertilization.  相似文献   

5.
Xenogenous fertilization was accomplished using bovine, porcine, and hamster follicular oocytes. The xenogenous fertilization rates for bovine and porcine follicular oocytes in the oviduct of the pseudopregnant rabbit were 13.4% and 2.0%, respectively. Temperatures of ovary, during transport to the laboratory, of 0 degrees or 37 degrees C had no effect on xenogenous fertilization rates of bovine oocytes. In vitro culture in 50 mug/ml FSH did not alter the xenogenous fertilization rates of bovine oocytes. Fertilization was observed with oocytes recovered 40 to 75 hr after insemination. Two cell embryos were recovered 70 to 75 hr after insemination. Ligation of the rabbit oviduct, number of ova deposited and sperm concentration did not affect the xenogenous fertilization rates of hamster ova. Cleavage of xenogenously fertilized hamster oocytes occurred between 28 and 29 hours after insemination.  相似文献   

6.
Regulation of sperm storage and movement in the mammalian oviduct   总被引:1,自引:0,他引:1  
The oviduct plays a vital role in ensuring successful fertilization and normal early embryonic development. The male inseminates many thousands or even millions of sperm, but this alone does not ensure that fertilization will be successful. The female tract, particularly the oviduct, provides filters that select for normal vigorously motile sperm. In conjunction with molecules in the seminal plasma and on sperm, the female tract regulates how and when sperm pass though the tract to reach the site of fertilization. Various regulatory processes control sperm passage into and through the oviduct. In some species, the uterotubal junction opens and closes to regulate when sperm may enter; furthermore, passage through the junction requires certain proteins on the sperm surface. Most of the sperm that manage to enter the oviduct soon become trapped and held in a reservoir. In marsupials and insectivores, this involves trapping sperm in mucosal crypts; while in most other mammalian species, this involves binding sperm to the oviductal epithelium. As the time of ovulation approaches, the sperm in the reservoir undergo capacitation, including motility hyperactivation. Capacitating sperm shed proteins that bind them to the mucosal epithelium, while hyperactivation assists the sperm in pulling off of the epithelium and escaping out of mucosal pockets. The process of sperm release is gradual, reducing chances of polyspermic fertilization. Released sperm may be guided towards the oocyte by secretions of the oviduct, cumulus cells, or oocyte. Hyperactivation likely assists sperm in penetrating the cumulus matrix and is absolutely required for penetrating the oocyte zona pellucida and achieving fertilization.  相似文献   

7.
The submicroscopic morphology of the vitelline envelope of Bufo arenarum's oocyte change significantly during the maturation and fertilization processes. The morphological changes are related to physiological activity in vivo and can be triggered in vitro by experimental procedures. It is our scope to present the ultrastructure differences of fascicular components of the vitelline envelope in coelomic, "pars recta" conditioned, oviductal, oviposited and fertilized oocytes. Our experimental results indicate that artificial "pars recta" treatment of coelomic oocytes arrange the fascicular components as those of oviposited oocyte, although differences still remain indicating that additional maturation processes take place while the egg pass througth the oviduct. Fertilized or activated oocytes which are refractary to sperm penetration, change the vitelline envelope fascicular components orientation giving a submicroscopical image quite different to those of none fertilized oocytes. These ultrastructural changes define in a clear cut manner the functional states of Bufo arenarum's oocyte.  相似文献   

8.
The notion of a gamete recognition system that alerts females to the presence of gametes in their reproductive tract profoundly influences our understanding of the physiology of events leading to conception and the bearing of offspring. Here, we show that the female responds to gametes within her tract by modulating the environment in which pregnancy is initially established. We found distinct alterations in oviductal gene expression as a result of sperm and oocyte arrival in the oviduct, which led directly to distinct alterations to the composition of oviductal fluid in vivo. This suggests that either gamete activates a cell-type-specific signal transduction pathway within the oviduct. This gamete recognition system presents a mechanism for immediate and local control of the oviductal microenvironment in which sperm transport, sperm binding and release, capacitation, transport of oocytes, fertilization, and early cleavage-stage embryonic development occur. This may explain the mechanisms involved in postcopulatory sexual selection, where there is evidence suggesting that the female reproductive tract can bias spermatozoa from different males in the favour of the more biologically attractive male. In addition, the presence of a gamete recognition system explains the oviduct's ability to tolerate spermatozoa while remaining intolerant to pathogens.  相似文献   

9.
Glycobiology of fertilization in the pig   总被引:1,自引:0,他引:1  
By adopting internal fertilization, the meeting of both gametes - the sperm and the egg - and thus the highly coordinated sequence of interactions leading to fertilization, occur in the female reproductive tract. In mammals, the oviduct has been shown to translate the requirements of the female, coordinating sperm activation (capacitation) and sperm transport with the arrival of the ovulated egg. A hierarchy of carbohydrate-based interactions accompanies these events ranging from the binding of uncapacitated sperm to the oviductal epithelium (establishment of the female sperm reservoir), to the primary and secondary binding processes contributing to gamete recognition and sperm penetration of the oocyte zona pellucida. The current perspective will focus on the carbohydrate-recognition systems in the binding events during fertilization in the pig. The roles of the major carbohydrate-binding proteins, the spermadhesins and the acrosomal serine proteinase, pro/acrosin are discussed under consideration of recent structural data. The glycans and the glycoproteins of the porcine oviduct with a focus on the candidate sperm receptors as well as the zona pellucida N-glycans of prepuberal pigs have been characterized by a mass spectrometric approach. Furthermore, some preliminary data supporting the hypothesis that the zona pellucida has to undergo a maturation process during oocyte development are presented.  相似文献   

10.
Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism.  相似文献   

11.
We recently demonstrated that mouse spermatozoa contain a mechanism to degrade their DNA into loop-sized fragments of about 50 kb, mediated by topoisomerase IIB, termed sperm chromatin fragmentation (SCF). SCF is often followed by a more complete digestion of the DNA with a sperm nuclease. When SCF-induced spermatozoa are injected into oocytes, the paternal pronuclei degrade their DNA after the initiation of DNA synthesis, but the maternal pronuclei are unaffected and replicate normally. Here, we tested whether the nuclease activity changes in spermatozoa of different maturation stages, and whether there is a functional relationship between the initiation of DNA synthesis and paternal DNA degradation induced by SCF in the zygote. We found that spermatozoa from the vas deferens have a much higher level of SCF activity than those from the cauda epididymis, suggesting that spermatozoa may acquire this activity in the vas deferens. Furthermore, paternal pronuclei formed in zygotes from injecting oocytes with SCF-induced vas deferens spermatozoa degraded their DNA, but this degradation could be inhibited by the DNA synthesis inhibitor, aphidicolin. Upon release from a 4 h aphidicolin-induced arrest, DNA synthesis was initiated in maternal pronuclei, while the paternal pronuclei degraded their DNA. Longer aphidicolin arrest resulted in the paternal pronuclei replicating their DNA, suggesting that delaying the initiation of DNA synthesis allowed the paternal pronuclei to overcome the SCF-induced DNA degradation pathway. These results suggest that the paternal DNA degradation, in oocytes fertilized with SCF-induced spermatozoa, is coupled to the initiation of DNA synthesis in newly fertilized zygotes.  相似文献   

12.
Osteopontin (OPN), a phosphoprotein containing an arginine-glycine-aspartic acid (RGD) sequence, has been identified in cow oviduct epithelium and fluid. To investigate the potential role OPN in fertilization, we evaluated the ability of RGD peptide (arginine-glycine-aspartic), RGE peptide (arginine-glycine-glutamic acid), integrins alphaV and alpha5 antibodies and OPN antibody to influence bovine in vitro sperm-egg binding and fertilization. Treatment of sperm or oocytes with the RGD peptide prior fertilization significantly decreased in vitro sperm-egg binding and fertilization compared to the non-treated controls or those treated with RGE peptide. Binding and fertilization were also significantly decreased when in vitro matured bovine oocytes or sperm were pre-incubated with integrins alphaV and alpha5 antibodies at concentration ranging from 5 to 20 microg/mL. Addition of a rabbit polyclonal IgG antibody against purified bovine milk OPN with sperm or/and oocytes decreased (P<0.05) fertilization compared to the in vitro-fertilized control. These data provided evidence that integrin ligands existed on bovine oocytes and spermatozoa that contained RGD recognition sequences, and that antibody to OPN, a protein that contains that RGD sequence, was capable of reducing sperm-egg binding and fertilization in vitro.  相似文献   

13.
Immunofluorescence staining with antibodies against acetylated histone H4 and 5-methylcytosine was carried out to investigate female chromatin remodeling throughout oocyte maturation and chromatin rearrangement involving both male and female genomes after fertilization. Oocyte cytoplasm remodels female chromatin in preparation of the fertilizing event and the subsequent chromatin rearrangement. Histone H4 are in fact progressively deacetylated whereas demethylating enzymes do not seem to be active over this period. The acetylase/deacetylase balance seems to be cell cycle dependent as female chromatin is deacetylated during maturation and reacetylated at telophase II stage both after fertilization and activation. On the contrary, DNA demethylation seems to be strictly selective. It is in fact confined to the remodeling of paternal genome after fertilization of mature oocytes as the ooplasm is not effective in demethylating either paternal chromatin in germinal vesicle breakdown (GVBD) fertilized oocytes or maternal genome of partenogenetically activated oocytes. Surprisingly, we induced maternal chromatin demethylation after fertilization by treating oocytes with a combination of a methyltransferase inhibitor, 5-azacytidine (5-AzaC), and a reversible and specific inhibitor of histone deacetylase, trichostatin A (TSA). This treatment likely induces a hyperacetylation of histones (thus favoring the access to demethylating enzymes by opening female chromatin structure) associated with a block of reparative methylation by inhibiting methytransferases. This manipulation of chromatin remodeling may have applications regarding the biological significance of aberrant DNA methylation.  相似文献   

14.
Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.  相似文献   

15.
16.
Summary Mammalian gametogenesis results in the production of highly specialized cells, sperm and oocytes, that are complementary in their arsenal of organelles and molecules necessary for normal embryonic development. Consequently, some of the zygotic structures, as illustrated in this review on the centrosome, are a combination of complementary paternal and maternal contributions. Mammalian oocytes are deprived of their centrioles during oogenesis, yet at the same time they generate a huge cytoplasmic reserve of centrosomal proteins. The active centrosome of spermatogenic stem cells is reduced to a single centriole that does not possess microtubule-nucle-ating activity. This centrosomal activity is restored at fertilization, when the sperm centriole is released into the oocyte cytoplasm, from which it attracts the oocyte-derived proteins of pericentriolar material and ultimately converts itself into an active zygotic centrosome. Subsequently, the microtubules around the zygotic centrosome are organized into a radial array called the sperm aster, that guides the apposition of male and female pronuclei, and the union of paternal and maternal genomes in the cytoplasm of a fertilized oocyte. The original sperm centriole duplicates and gives rise to the first mitotic spindle. This biparental mode of centrosome inheritance is seen in most mammals, except for rodents, where both centrioles are degraded during spermiogenesis and the zygotic centrosome is organized without any paternal contributions. The studies of centrosomal inheritance at fertilization provide the platform for designing new safe methods of assisted-reproduction and infertility treatments in humans.  相似文献   

17.
猪卵母细胞的体外受精及多精受精   总被引:4,自引:0,他引:4  
对用于猪体外受精(IVF)的研究方法和技术,如传统的液滴IVF、透明带下注射精子受精(SUZI)、卵母细胞质内单精注射受精(ICSI)及细管IVF等进行了简述。与其它动物相比,进行猪卵的体外受精研究,多精受精现象特别明显。大量的研究表明,猪卵的多精受精不但与其品种特性有关,而且与卵母细胞成熟的程度、透明带的异常、受精时获能精子的浓度、输卵管分泌物、受精液蛋白添加成分、NaHCO3浓度、咖啡因、pH值以及温度等因素密切相关。  相似文献   

18.
Oocytes of LT/Sv mice have anomalous cytoplasmic and nuclear maturation. Here, we show that in contrast to the oocytes of wild-type mice, a significant fraction of LT/Sv oocytes remains arrested at the metaphase of the first meiotic division and is unable to undergo sperm-induced activation when fertilized 15 hours after the resumption of meiosis. We also show that LT/Sv oocytes experimentally induced to resume meiosis and to reach metaphase II are unable to undergo activation in response to sperm penetration. However, the ability for sperm-induced activation developed during prolonged in vitro culture. Both types of LT/Sv oocytes, i.e. metaphase I and those that were experimentally induced to reach metaphase II, underwent activation when they were fertilized 21 hours after germinal vesicle breakdown (GVBD). Thus, the ability of LT/Sv oocytes to become activated by sperm depends on cytoplasmic maturation rather than on nuclear maturation i.e. on the progression of meiotic division. We also show that sperm penetration induces fewer Ca(2+) transients in LT/Sv oocytes than in control wild-type oocytes. In addition, we found that the levels of mRNA encoding different isoforms of protein kinase C (alpha, delta and zeta), that are involved in meiotic maturation and signal transduction during fertilization, differed between metaphase I LT/Sv oocytes which cannot be activated by sperm, and those which are able to undergo activation after fertilization. However, no significant differences between these oocytes were found at the level of mRNA encoding IP(3) receptors which participate in calcium release during oocyte fertilization.  相似文献   

19.
The mammalian oviduct plays a key role in sperm storage, capacitation, and selection. Specific oviduct secretions and/or binding to oviductal cells are thought to be responsible for the extension of the fertile life span of sperm. In this in vitro study, a quantitative assay for sperm binding was developed to analyze the mechanisms of sperm-oviductal cell adhesion and release in the bovine species. Distribution and acrosomal status of sperm bound to in vitro-cultured ampullary and isthmic cell monolayers were followed until the time of sperm release by means of fluorescence labeling techniques. In order to understand whether release is due to surface changes of sperm or oviductal cells, double incubation experiments with unlabeled and Hoechst-labeled sperm have been performed. Main findings demonstrate that (1) only acrosome-intact sperm bind specific bovine oviductal epithelial cells; (2) acrosomes of bound sperm are preserved intact over time; and (3) release of unreacted sperm is likely to be due to changes of the sperm surface, probably triggered by capacitation. These findings support the hypothesis that binding to oviductal cells is essential for preserving the sperm fertilization competence during the interval from the onset of estrus to ovulation.  相似文献   

20.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号