首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonenzymatic glycation of basement membrane proteins, such as fibronectin and type IV collagen, occurs in diabetes mellitus. These proteins are nonenzymatically glycated in vivo and can also be nonenzymatically glycated in vitro. After 12 days of incubation at 37 degrees C with 500 mM glucose, purified samples of human plasma fibronectin and native type IV collagen showed a 13.0- and 4.2-fold increase, respectively, in glycated amino acid levels in comparison to control samples incubated in the absence of glucose. Gelatin (denatured calfskin collagen) was glycated 22.3-fold under the same conditions. Scatchard analyses were performed on the binding of radiolabeled fibronectin to gelatin or type IV collagen. It was found that there is a 3-fold reduction in the affinity of fibronectin to type IV collagen due to the nonenzymatic glycation of fibronectin. The dissociation constant (KD) for the binding of control fibronectin to type IV collagen was 9.6 X 10(-7) M while the KD for glycated fibronectin and type IV collagen was 2.9 X 10(-6) M. This was similar to the 2.7-fold reduction in the affinity of fibronectin for gelatin found as a result of the nonenzymatic glycation of fibronectin (KD of 4.5 X 10(-7) M for the interaction of control fibronectin with gelatin vs. KD of 1.2 X 10(-6) M for the interaction of nonenzymatically glycated fibronectin with gelatin). The molecular association of control fibronectin or its glycated counterpart with [3H]heparin was also determined. Scatchard analyses of this interaction showed no difference between control fibronectin and glycated fibronectin in [3H]heparin binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This protocol describes a method for purification of fibronectin (Fn) from human plasma based on a combination of gel filtration and affinity chromatography steps. Clarified plasma is first loaded onto a Sepharose CL-4B column and unbound material is sequentially purified on columns containing covalently coupled gelatin and Arg. The elution conditions are optimized to obtain a homogeneous preparation of Fn on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Although the Fn yield is expected to be lower than that obtained using other methods, affinity adsorbents based on gelatin and Arg and gentle elution steps offer advantages including a high purity of the preparation and a correctly folded protein. The preparation can be useful for interaction studies and analysis of biological and immunological activities of Fn.  相似文献   

3.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules.  相似文献   

4.
We have developed a simple method for plasma fibronectin purification based on the well-known gelatin binding property of fibronectin. In this procedure we immobilize the melted gelatin to nitrocellulose membranes; these are then used to affinity-purify the fibronectin from the plasma sample. The fibronectin is eluted from the membrane by treatment with 8 M urea. The procedure described here gives a yield of up to 60% (from presumed fibronectin concentration) and the fibronectin obtained is homogeneous in SDS-PAGE and biologically active, as assessed by a cell migration assay. The method is rapid, simple, inexpensive, does not require the use of chromatographic equipment and is suitable for tissue culture applications.  相似文献   

5.
Fluorescein isothiocyanate conjugated human plasma fibronectin, 70-kDa collagen-binding, 60-kDa central, 60-kDa heparin-binding, 180-kDa heparin, collagen-binding fibronectin fragments and gelatin were used to study extracellular fibronectin matrix formation. Exogenous fibronectin, gelatin, 70-kDa collagen-binding and 180-kDa heparin, collagen-binding fragments were shown to be able to bind specifically to preexisting extracellular matrix of living fibroblasts. The results suggest that: (i) Fibronectin matrix formation may occur through a self-assembly process; (ii) the NH2-terminal part of fibronectin is responsible for fibronectin-fibronectin interaction during fibronectin fibril formation; (iii) plasma fibronectin may be the source for tissue fibronectin.  相似文献   

6.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

7.
Plasma fibronectin is synthesized and secreted by hepatocytes   总被引:36,自引:0,他引:36  
Primary cultures of hepatocytes of rats and hamsters were established and examined for the synthesis and secretion of fibronectin. Hepatocytes of both species secreted fibronectin as a soluble dimeric protein which could be purified by its affinity for gelatin and using specific antisera. Plasma and cellular fibronectins could be clearly resolved on two-dimensional gels. In both species, the majority of the fibronectin secreted by hepatocytes was of the plasma type, as shown by analyses on one- and two-dimensional gels. The secretion of plasma fibronectin increased with time in culture, both in absolute terms and relative to the secretion of albumin. Even during the first day of culture, the secretion of fibronectin relative to that of albumin appeared to be sufficient to account for the relative levels of these two proteins in plasma. Hepatocytes of both species secreted preferentially the chain of plasma fibronectin with higher apparent molecular weight, although the faster migrating chain was also secreted. In addition, hamster hepatocytes cultured for 2 or more days appeared to secrete a cellular form of fibronectin. Possible origins for the different chain types of cellular and plasma fibronectins are discussed.  相似文献   

8.
Equilibrium dialysis studies demonstrated that plasma fibronectin bound D-glucose with moderate affinity. The binding of glucose by plasma fibronectin caused the dissoclation of plasma fibronectin-gelatin complexes. Glucose and gelatin did not compete for the same binding sites on plasma fibronectin. The glucose-caused dissociation of plasma fibronectin from plasma fibronectin-gelatinized horse erythrocyte complexes destroyed the potent hemagglutination activity of these complexes against trypsinized, formalinized sheep erythrocytes.  相似文献   

9.
Human placental fibronectin was isolated from fresh term placenta by urea extraction and purified by gelatin affinity chromatography. A 44-kDa chymotryptic fragment, also purified by gelatin affinity chromatography, gave a broad, diffuse band on polyacrylamide gel electrophoresis, whereas the analogous 43-kDa fragment from human plasma fibronectin migrated as a defined, narrow band. Upon extended treatment with endo-beta-galactosidase from Escherichia freundii, the 44-kDa chymotryptic gelatin-binding fragment from placental fibronectin changed its behavior on gel electrophoresis and migrated as a narrower, more defined band. The carbohydrates on human placental fibronectin contained a large percentage of polylactosamine structures, part of which occurred on the gelatin-binding fragment, comprising almost twice as much carbohydrate as plasma fibronectin. NH2-terminal amino acid sequence analysis of the chymotryptic gelatin-binding fragments from both fibronectins showed the first 21 residues to be identical. Tryptic and chymotryptic peptide maps of the gelatin-binding fragment from placental fibronectin, however, showed differences including several protease-resistant domains not found in the analogous fragment from plasma fibronectin. Intact placental fibronectin contains 20,000 Da of carbohydrate, whereas plasma fibronectin contains 11,000 Da. Placental fibronectin is more protease-resistant than plasma fibronectin, possibly due to the additional carbohydrate. Polyclonal antibodies against either fibronectin completely cross-react with amniotic fluid fibronectin, placental fibronectin, and plasma fibronectin upon Ouchterlony immunodiffusion. Human fibronectins of putatively the same polypeptide structure are, therefore, glycosylated in a dramatically different fashion, depending on the tissue of expression. If the patterns of glycosylation comprise the only difference in the glycoprotein, this may confer the characteristic protease resistance found for each of the fibronectins.  相似文献   

10.
Fibronectins from human adult plasma, fetal plasma and from amniotic fluid obtained during early and late gestation were compared with respect to (i) their reactivity with lectins, (ii) their binding to the physiological ligands gelatin and heparin, and (iii) the role of the carbohydrate residues in the binding to these two ligands. The two fibronectin isoforms displayed distinct developmental differences in both glycosylation and binding properties: (i) Proportions of tri/tetraantennary complex glycans compared to the fraction of biantennary structures, as inferred from the reactivity with concanavalin A, were highest in amniotic fluid fibronectin from late pregnancy, lower in amniotic fluid fibronectin from early gestation, and even lower in fetal and adult plasma fibronectins. Likewise, fucose (alpha 1-6) linked to the innermost N-acetylglucosamine of the chitobiosyl core, defined by reactivity with Lens culinaris agglutinin (LCA), was present primarily in amniotic fluid fibronectin, and decreased in content during gestation from the 2nd. to the 3rd. trimenon. Both fetal and adult plasma fibronectins were only weakly reactive with LCA, indicating a low content of (alpha 1-6) linked fucose residues. After prior treatment with sialidase, both plasma and amniotic fluid fibronectins strongly reacted with erythrocyte phytohaemagglutinin (E-PHA), indicating that both fibronectin isoforms contain bisecting (beta 1-4) N-acetylglucosamine residues. Amniotic fluid fibronectins showed much greater reactivity than adult and fetal plasma fibronectins with wheat germ agglutinin; binding of this lectin to amnion fluid fibronectins was not decreased by desialylation indicating the presence of poly(N-acetyllactosamine) units. Whereas amniotic fluid fibronectins were strongly reactive with peanut agglutinin, neither adult nor fetal plasma fibronectins did bind to this lectin unless after prior desialylation. Hence, both fibronectin isoforms contain O-glycan residues that are fully sialylated in fetal and adult plasma fibronectins, but only partly sialylated in amniotic fluid fibronectins. According to these differences, glycosylation of plasma and amniotic fluid fibronectins is under developmental regulation. (ii) Amniotic fluid fibronectins had a significantly lower binding activity for both heparin and gelatin than plasma fibronectins. Moreover, amnion fibronectin from late gestation displayed a significantly lower binding to these two ligands than amnion fibronectin from early gestation. Fetal plasma fibronectins had a lower binding activity for gelatin than adult plasma fibronectin. (iii) Treatment of fibronectins with sialidase, fucosidase and removal of N-glycans with endoglycosidases H and F did not affect binding to gelatin and heparin, indicating that the interaction of plasma and amnion fibronectin with these two ligands is not influenced by their oligosaccharide moieties.  相似文献   

11.
Plasma fibronectin was purified from a gelatin-affinity chromatography column by elution with glucose. This procedure was effective only if the gelatin was particulate when it was attached to the Sepharose 4B. Glucose could not elute fibronectin from the gelatin if the gelatin was melted before it was attached to the Sepharose 4B. This new purification technique has the advantage of using very mild conditions for the isolation of plasma fibronectin.  相似文献   

12.
The enhancement of the binding of plasma fibronectin to collagen or gelatin by heparin was previously thought to be due primarily to interaction of heparin with fibronectin. We observed, however, that the elution of purified human plasma fibronectin from heparin-treated gelatin-agarose required the same high urea concentrations regardless of whether heparin treatment preceded or followed fibronectin adsorption. Acylation of gelatin-agarose with acetic anhydride or succinic anhydride had little effect upon fibronectin binding, yet the heparin enhancement of fibronectin binding was abolished by either acylation reaction. When heparin binding to gelatin-agarose was investigated with dansyl heparin, gelatin-agarose bound substantial quantities of labeled heparin which could be readily dissociated from the matrix with 2 M NaCl. Acetylated gelatin-agarose did not bind detectable amounts of dansyl heparin. We interpret these results as evidence that the stronger binding of fibronectin to gelatin-agarose in the presence of heparin is due to heparin itself binding to gelatin, thus allowing fibronectin to bind simultaneously to both immobilized ligands through appropriate domains of the glycoprotein.  相似文献   

13.
As measured by two assays of biological activity, fibronectin was readily denatured by heat. Both by the rat liver slice assay and by gelatin-latex agglutination, 90% of the activity disappeared in about 10 min at 60 °C. In contrast, immunological activity, as measured by microcomplement fixation, showed little change at 10 min and was at least 60% as great as unheated fibronectin after 20–50 min at 60 °C. Binding of heparin was unaffected by heating up to 52 min, but at very long times (48 hr at 60 °C), it also was lost. Differential scanning calorimetry of native fibronectin showed three endothermal denaturing transitions, at 68, 82, and 119 °C. Enthalpies of denaturation for the three transitions are approximately 2.6, 0.4, and 0.7 cal/g of flbronectin. These results are consistent with a three-domain structure for fibronectin. The domain which unfolds at 68 °C is associated with gelatin binding and cell. binding. The 82 °C domain appears to be associated with much of the immunological activity, and the 119 °C domain with heparin binding, as well as with some immunological activity. Residual immunological activity after loss of heparin binding may reside in nonordered portions of the molecule.  相似文献   

14.
Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis.  相似文献   

15.
58 malnourished children (mean age 18 months) with a clinical diagnosis of marasmus or kwashiorkor were studied with respect to plasma fibronectin levels, plasma total solids, spun hematocrits, heights, weights, mid-arm circumferences, and head circumferences. Bimodal distributions were demonstrated for plasma fibronectin versus weight deficits, total solids, hematocrits, and mid-arm circumference in children 12 months of age and older (p less than 0.003 for all). The mean plasma fibronectin level for controls was 253 micrograms/ml. The mean level for the malnourished group was 96 micrograms/ml (p less than 0.0001). Malnourished children with initial plasma fibronectin levels above 100 micrograms/ml had a higher survival rate than those with levels less than 100 (92 versus 69%). With successful therapy, plasma fibronectin levels rose quickly in most children often before detectable changes were noted in clinical and other laboratory parameters. An overshoot of the mean normal levels was observed with successful treatment wherein the mean levels rose to 315 micrograms/ml (p less than 0.05). Plasma fibronectin determinations on malnourished children can serve as an important prognostic marker as well as a reliable indicator of successful therapy and recovery.  相似文献   

16.
Highly purified, functionally active human fibronectin preparation   总被引:2,自引:0,他引:2  
Fibronectin has been purified by gelatin-Sepharose affinity chromatography from fresh frozen human plasma. The bound fibronectin was eluted with 3 M urea. The purity of the fibronectin obtained has been checked on (immunoelectrophoresis, polyacrylamide gel electrophoresis, FPLC). Biological activity of the purified molecule has been monitored by means of three assays: quantitation of the gelatin-binding activity by ELISA, quantitation of the fibronectin-mediated attachment of fibroblasts on plastic and evaluation of the opsonic activity (uptake of gelatin latex particles by a murine macrophage line). When deep-frozen, fibronectin retains all of its properties. This highly purified and functional fibronectin fulfills the basic requirements for a standard reagent. It will allow to investigate physicochemical and functional alterations of various fibronectins.  相似文献   

17.
Fibronectin was isolated from porcine plasma by affinity chromatography with gelatin-linked Sepharose 4B. Porcine fibronectin had a chemical composition similar to those of human and other fibronectins and reacted with antiserum raised against human fibronectin. It showed hemagglutination activity with trypsin-treated rabbit erythrocytes, though the activity was far less than that of human fibronectin. Porcine plasma fibronectin consisted of two subunit chains of about 230,000-daltons linked by disulfide bonds(s). Limited proteolysis of this protein with porcine liver cathepsin B yielded five major fragments which were investigated by affinity chromatography with gelatin- and heparin-linked Sepharose 4B. One fragment (Mr = 50,000) was bound to gelatin but not to heparin, while the remaining four were bound to heparin but not to gelatin, suggesting that plasma fibronectin takes a discrete domain structure with respect to interaction with these two macromolecules. The three larger heparin-binding fragments, Mr = 175,000, 150,000, and 130,000 were eluted with different concentrations of a mixture of NaCl and urea from the heparin-column, suggesting that they have different interactions with heparin, the 130,000-dalton fragment being the one with the strongest interaction. After reduction with 2-mercaptoethanol, the 175,000-dalton fragment was converted to the 150,000-dalton region fragment, which, together with the unchanged 150,000-dalton fragment, appeared to be equivalent in amount to the 130,000-dalton fragment. This finding suggests that the 150,000- and 130,000-dalton fragments may have originated from different subunit chains. Since the 175,000-dalton fragment was not produced by cathepsin B digestion of fibronectin which had been treated with plasmin, it was concluded that the 175,000-dalton fragment contained interchain disulfide bond(s) which had linked the native subunit chains. These results suggest that porcine plasma fibronectin has non-identical subunit chains composed of domains which differ in interaction with heparin and in susceptibility to cathepsin B.  相似文献   

18.
We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular collagen and fibronectin fibril deposition. Matrix fibronectin and collagen deposition remained decreased in cultures containing anti-60k Fab' until cells became bilayered or more dense, when fibronectin and collagen began to appear in lower cell layers. Anti-60k Fab' added to confluent cultures 24 h before fixation and staining had no effect on matrix fibronectin or collagen, so anti- 60k Fab' did not simply block immunostaining. Confluent cultures grown in anti-60k Fab' and labeled for 24 h with [3H]proline incorporated identical amounts of [3H]proline and [3H]hydroxyproline, but [3H]hydroxyproline deposition in the cell layer was significantly decreased by anti-60k Fab' (P less than 0.01). Extracellular matrix collagen does not appear to form a scaffold for fibronectin deposition, as neither gelatin nor a gelatin-binding fragment of plasma fibronectin inhibited deposition of matrix fibronectin. Our results suggest that interstitial collagens and fibronectin interact to form a fibrillar component of the extracellular matrix, and that fibronectin is required for normal collagen organization and deposition by fibroblasts in vitro. Domain-specific antibodies to fibronectin are powerful tools to study the biological role of fibronectin in extracellular matrix organization and other processes.  相似文献   

19.
We have used fluorescein isosthiocyanate-conjugated gelatin (FITC- gelatin) (1 mg/ml) to localize cell surface fibronectin in unfixed live cells in cultures. FITC-gelatin stains the fibronectin matrix on primary cultures of rat and chick embryo fibroblasts as well as untransformed, established cell lines. In live cultured cells, fibronectin in many areas of the extracellular matrix is inaccessible to antibody and cannot be visualized by immunofluorescence staining. In contrast, fibronectin in these areas is fully stainable by FITC- gelatin. At a low concentration (20 micrograms/ml), FITC-gelatin stains the fibronectin matrix of primary cultured cells but not of "untransformed" established cell lines. SEM can detect only the matrix stainable with the low concentration of FITC-gelatin, such as that expressed by primary chick embryo fibroblasts. The binding of fibronectin to the extracellular matrix is very stable and FITC-gelatin remained bound to the matrix for at least 10 d in culture. Radioiodinated gelatin has been used to quantitate the level of cell surface fibronectin in living normal and transformed cells. FITC- gelatin appears to be a useful probe for studying the fibronectin of living cells in culture.  相似文献   

20.
N-Glycanase deglycosylation of purified 44 kDa chymotryptic collagen-binding domain from human plasma fibronectin does not significantly modify its behavior on gelatin affinity chromatography. This indicates that carbohydrates do not play any role in the binding affinity of fibronectin to collagen. The influence of changes in glycosylation on the biological functions of fibronectin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号