首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Maltotriose transport was studied in two brewer's yeast strains, an ale strain 3001 and a lager strain 3021, using laboratory-synthesized14C-maltotriose. The maltotriose transport systems preferred a lower pH (pH 4.3) to a higher pH (pH 6.6). Two maltotriose transport affinity systems have been indentified. The high affinity system hasK m values of 1.3 mM for strain 3021 and 1.4 mM for strain 3001. The low affinity competitively inhibited by maltose and glucose withK i values of 58 mM and 177 mM. respectively, for strain 3021, and 55 mM and 147 mM, respectively, for strain 3001. Cells grown in maltotriose and maltose had higher maltotriose and maltose transport rates, and cells grown in glucose had lower maltortriose and maltose transport rates. Early-logarithmic phase cells transported glucose faster than either maltose or maltotriose. Cells harvested later in the growth phase had increased maltotriose and maltose transport activity. Neither strain exhibited significant differences with respect to maltose and maltotriose transport activity.  相似文献   

2.
Amylopectin degradation in pea chloroplast extracts   总被引:10,自引:10,他引:0  
Levi C  Preiss J 《Plant physiology》1978,61(2):218-220
Phosphorolysis rather than phosphorylation of amylolysis products was found to be the major pathway of sugar phosphate formation from amylopectin by pea (Pisum sativum L.) chloroplast stromal proteins. The Km for inorganic phosphate incorporation was 2.5 mm, and ATP did not stimulate amylopectin-dependent phosphate incorporation. Arsenate (10 mm) inhibited phosphate incorporation into glucose monophosphates up to 46% and phosphoglucomutase activity 96%, resulting in glucose 1-phosphate accumulation as a product of amylopectin degradation. The intracellular distribution of enzymes of starch utilization was determined. Phosphorylase, phosphoglucomutase, and hexokinase were found in the chloroplast and cytoplasm, while β-amylase was restricted to the cytoplasm. Maltase was not detectable; maltose phosphorylase was active in the chloroplast.  相似文献   

3.
Activities for the glycosidases, cellobiase, maltase and chitobiase toward p-nitrophenyl-derived substrates, were found in the digestive diverticula of Crassostrea virginica (Gmelin). Chitobiase activity was also detected in the crystalline style, but specific activity was higher in the digestive diverticula. No activity was detected for either cellobiase or maltase in the style at pH values of 4.0, 4.25, 5.0 or 6.0 in 50 mM sodium acetate buffer or 7.0 in 100 mM phosphate (K2HPO4) buffer. Implications for digestive physiology are discussed.  相似文献   

4.
Two groups of growing posthatching Cornish x Rock cross chickens were fed with either a carbohydrate-containing (52.5%) or a carbohydrate-free diet. At 36 days after hatching some of the chicks in each group were shifted to the opposite diet. Chickens fed on a carbohydrate-containing diet grew faster and achieved higher asymptotic masses than chickens fed on a carbohydrate-free diet. Chickens fed on a carbohydrate-free diet had longer intestines and larger intestinal areas than chickens of the same mass fed on a carbohydrate-containing diet. In both groups sucrase and maltase activity (standardized by either intestinal area or mass) increased from day 1 to approximately day 17. After day 17, chickens fed on a carbohydrate-containing diet exhibited 1.8 and 1.9 times higher sucrase and maltase activities per unit intestinal area, respectively, than chickens fed on a carbohydrate-free diet. Analysis of covariance was used to estimate the contribution of sucrase and the sucrase-independent maltases to maltase activity, and to estimate the effect of diet on the sucrase-independent maltases. Sucrase contributed 80% and 75% of the maltase activity in carbohydrate and carbohydrate-free fed chickens, respectively. Chickens shifted from a carbohydrate-free to a carbohydrate diet converged in gross intestinal morphology and intestinal sucrase and maltase levels with carbohydrate-fed chickens within 8 days. Chickens shifted from carbohydrate to carbohydrate-free diets, in contrast, did not show appreciable changes in intestinal length and after 8 days had not reduced levels of sucrase and maltase to those of chickens fed on the carbohydrate-free diet. A comparison of integrated maltase intestinal activity with published data on glucose uptake showed that the ratio of maltose hydrolysis to glucose uptake seemed to be about 7 and to remain relatively invariant during ontogeny. Because so little is known about the interaction between hydrolysis and uptake in vivo, it is difficult to determine if this relatively high ratio represents excess hydrolytic capacity or if it is needed to provide high lumenal glucose concentrations that maximize uptake.Abbreviations m body mass - K m Michaelis constant - K m * apparent Michaelis constant - GI gastro-intestinal  相似文献   

5.
Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 mol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 mol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.  相似文献   

6.
Crude extracts of Actinoplanes missouriensis and related strains catalyze the ATP-dependent phosphorylation of maltose to maltose 1-phosphate. The enzyme of A. missouriensis responsible for this reaction was purified and characterized. This protein has an estimated molecular mass of 57 kDa and it is most likely a monomer. The Km value was 2.6 mM for maltose and 0.54 mM for ATP. Only maltose acted effectively as phosphoryl-group acceptor, and ATP was not replaceable as phosphoryl-group donor. Tryptic peptides of the enzyme were sequenced, and the sequences of these peptides will allow construction of degenerate primers to identify the gene coding for this unique kinase.  相似文献   

7.
While most strains of heterofermentative lactobacilli and strains of Leuconostoc species contained only traces of a dehydratase reacting with glycerol or propanediol-1,2, three strains of Lactobacillus brevis and one strain of L. buchneri that metabolized glycerol readily in the presence of glucose, contained propanediol-1,2 dehydratase (EC 4.2.1.28). This cobamide requiring enzyme from L. brevis B 18 was partially purified. It reacts with the substrates propanediol-1,2, glycerol and ethanediol-1,2 with the relative activities of about 3:2:1. This ratio remained unchanged throughout the purification procedure. The substrate affinities were measured: propanediol-1,2 K m=0.6 mM, glycerol K m=4 mM, ethanediol-1,2 K m=5.3 mM coenzyme B12 (substrate glycerol) K m=0.007 mM. The activity of the dehydratase was promoted by potassium or ammonium ions and inhibited by sodium, lithium, magnesium or specially manganese. The apparent molecular weight of propanediol-1,2 dehydratase was determined as Mr=180,000.Dedicated to Prof. Dr. H. G. Schlegel on behalf of his 60th birthday  相似文献   

8.
2-Deoxy-d -glucose (2 DG) entered synaptosomes (from rat brain) by a high-affinity, Na+-independent glucose transport system with a Km, of 0.24 mM. 3-O-methyl-glucose, D-glucose, and phloretin were competitive inhibitors of 2-DG transport with Ki's of 7 mM, 64 μM, and 0·75 μM, respectively. Insulin was without effect. 2-DG uptake was also saturable at high substrate concentrations with an apparent low affinity Km, of 75 mM, where the Kl, for glucose was 17.5 mM. We are not certain whether the rate-limiting step for the low-affinity uptake system is attributable to transport or phosphorylation. However, the high-affinity glucose transport system probably is a special property of neuronal cell membranes and could be useful in helping to distinguish separated neurons from glial cells.  相似文献   

9.
Gram-negative ruminal bacteria with an outer membrane are generally more resistant to the feed additive, monensin, than Gram-positive species, but some bacteria can adapt and increase their resistance. 16S rRNA sequencing indicates that a variety of ruminal bacteria are found in the “low G + C Gram-positive group,” but some of these bacteria are monensin resistant and were previously described as Gram-negative species (e.g., Selenomonas ruminantium and Megasphaera elsdenii). The activity of monensin can be assayed by its ability to cause potassium loss, and results indicated that the amount of monensin needed to catalyze half maximal potassium depletion (Kd) from low G + C gram-positive ruminal bacteria varied by as much as 130-fold. The Kd values for Butyrivibrio fibrisolvens 49, Streptococcus bovis JB1, Clostridium aminophilum F, S. ruminantium HD4, and M. elsdenii B159 were 10, 65, 100, 1020, and 1330 nM monensin, respectively. B. fibrisolvens was very sensitive to monensin, and it did not adapt. S. bovis and C. aminophilum cultures that were transferred repeatedly with sub-lethal doses of monensin had higher Kd values than unadapted cultures, but the Kd was always less than 800 nM. S. ruminantium and M. elsdenii cells were highly resistant (Kd > 1000 nM), and this resistance could be explained by the ability of these low G + C Gram-positive bacteria to synthesize outer membranes. Received: 14 May 1999 / Accepted: 24 June 1999  相似文献   

10.
In order to understand the effect of phosphate salts on the freeze-concentrated glass-like transition temperature (T g′) of aqueous sugar solutions, two types of sugar (glucose and maltose) and five types of phosphate salts (Na3PO4, Na4P2O7, Na5P3O10, K3PO4, and K4P2O7) were employed, and the thermal properties of various sugar-phosphate aqueous systems were investigated using differential scanning calorimetry. The T g′ of glucose increased with increasing sodium phosphates up to a certain phosphate ratio, decreasing thereafter. The maximum T g′ value was slightly higher in the order of Na3PO4 > Na4P2O7 ≥ Na5P3O10. Maltose-sodium phosphate also showed a similar trend as glucose-sodium phosphate samples. However, the degree of T g′-rise of maltose systems was much less than that of glucose. It is thought that the T g′ elevated by the molecular interaction between sugar and phosphate ions will be reduced by hydrated sodium ions. In comparisons between potassium phosphate and sodium phosphate, it was found that sugar-potassium phosphates showed the lower maximum T g′ at a lower phosphate ratio than sugar-sodium phosphates. In addition, the T g′ of potassium phosphates dropped sharply in comparison with sodium phosphates at the high phosphate ratio. These results suggest that potassium phosphates are lower T g′ than sodium phosphates, and that potassium ion plays a better plasticizer than sodium ion. A certain amount of sodium phosphates (Na3PO4 and Na4P2O7) caused devitrification. Potassium phosphates, however, did not show devitrification which can be explained by the fact that potassium ion can be dynamically restricted by sugar.  相似文献   

11.
Sugar substrates which depress the intracellular level of inorganic phosphate in baker's yeast (d-glucose,d-fructose,d-mannose, sucrose, as well as maltose andd-galactose after appropriate induction) also make transmembrane flux of phosphate anions possible. Acetate and ethanol, although readily oxidized, as well as nonmetabolized sugars, do not produce the effect. Phosphate uptake in whole cells (but not in protoplasts) is accelerated by preincubation with substrate either aerobically or anaerobically but the actual presence of substrate in the incubation medium is required for transport to take place. Starved cells take up phosphate from the medium with aK m of 3mm, the half-activation concentration by glucose being 18mm, the amount taken up being constant under given conditions (40 μmol/g dry wt. here). Phosphate-rich cells lose phosphate to the medium in the presence of a suitable substrate. The uptake process is characterized by an activation energy of 13400 cal/mol at 10−6 m phosphate and of 9400 cal/mol at 10−3 m phosphate. The process shows two optima at pH 5.0 and 7.0. A short-lived intermediate of fermentative sugar metabolism is postulated as essential for the translocation of phosphate across the yeast membrane.  相似文献   

12.
Summary Glucose uptake by whole cells of Bacteroides ruminicola B14 is constitutive. Potassium concentrations between 10 and 150 mm stimulated uptake over fourfold, while sodium had little effect on uptake. The involvement of potassium in glucose uptake by B. ruminicola was supported by strong inhibition of uptake by the ionophores valinomycin, lasalocid, and monensin. The electron transport inhibitor antimycin A had little effect on uptake, but menadione and acriflavine inhibited uptake by 30 and 48%, respectively. Potent inhibitors of uptake included oxygen, p-chloromercuribenzoate, HgCl2, and o-phenanthroline. Sodium arsenate decreased uptake by 40%, suggesting that a high-energy phosphate compound and possibly a binding protein may be involved in glucose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol inhibited glucose uptake by 37 and 22%, respectively. Little change in uptake activity was observed at extracellular pH values between 4.0 and 8.0. Excess (10 mm) cellobiose, maltose, and sucrose inhibited glucose uptake less than 15%. High levels (0.15% w/v) of p-coumaric acid and vanillin decreased uptake by 32 and 37%, respectively, while 0.15% ferulic acid decreased uptake by 15%.  相似文献   

13.
Characterization of glucoamylase from Lactobacillus amylovorus ATCC 33621   总被引:2,自引:0,他引:2  
Summary An intracellular glucoamylase, purified from Lactobacillus amylovorus, reacted selectively with polysaccharides. Kinetic studies indicated low affinity for maltose and maltotriose (Km 58 g/ml and 178 g/ml) and higher affinity for starch and dextrin (Km 0.01 g/ml and 0.02 g/ml). Glucoamylase was inhibited almost 50% by 10 mM glucose. Cu2+ and Pb2+ inhibited glucoamylase at 1.0 mM but EDTA and other metal chelators had no effect on the enzyme activity. Acarbose and Tris inhibited the enzyme by 84% and 98%, respectively at 1 mM, while iodoacetate and p-chloromecuribenzoic acid inhibited activity by 98% and 78%, respectively at 10 mM. The purified enzyme was thermolabile at temperatures greater than 55°C and thus has potential for application in the brewing industry.  相似文献   

14.
In order to clearly establish the properties of the enzymes responsible for hexose phosphorylation we have undertaken the separation and characterization of these enzymes present in tomato fruit (Martinez-Barajas and Randall 1996). This report describes the partial purification and characterization of glucokinase (EC. 2.7.1.1) from young green tomato fruit. The procedure yielded a 360-fold enrichment of glucokinase. Tomato fruit glucokinase is a monomer with a molecular mass of 53 kDa. Glucokinase activity was optimal between pH 7.5 and 8.5, preferred ATP as the phosphate donor (K m = 0.223 mM) and exhibited low activity with GTP or UTP. The tomato fruit glucokinase showed highest affinity for glucose (K m =65 μM). Activity observed with glucose was 4-fold greater than with mannose and 50-fold greater than with fructose. The tomato fruit glucokinase was sensitive to product inhibition by ADP (K i = 36 μM). Little inhibition was observed with glucose 6-phosphate (up to 15 mM) at pH 8.0; however, at pH 7.0 glucokinase activity was inhibited 30–50% by physiological concentrations of glucose 6-phosphate. Received: 4 October 1997 / Accepted: 10 January 1998  相似文献   

15.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

16.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

17.
Cations were generally ineffective in stimulating succinate transport in a succinate dehydrogenase mutant of Bacillus subtilis unless accompanied by polyvalent anions; phosphate and sulfate being particularly active. The Km values for the phosphate or sulfate requirement were approx. 3 mM.Biphasic kinetics were characteristic of both the succinate (Km values 0.1 and 1 mM), and inorganic phosphate (Km values 0.1 and 3 mM) transport system(s). The phosphate transport system(s) was repressed by high inorganic phosphate and a coordinate increase in the transport of phosphate, arsenate, and phosphate-stimulated succinate transport accompanied growth in low phosphate media.A class of arsenate resistant mutants were simultaneously defective in the transport of arsenate, phosphate and succinate when cells were repressed for phosphate transport, however, the transport of these ions was regained in these mutants when grown in low phosphate media. Organic phosphate esters did not stimulate succinate transport in arsenate resistant mutants but were effective after growth in low phosphate media. Growth under phosphate limitation permitted the simultaneous regain of both phosphate and sulfate dependent succinate transport activities whereas sulfate limitation alone was ineffective.Succinate was not transported by an anion exchange diffusion mechanism since phosphate efflux was low or absent during succinate transport.The transport of C4-dicarboxylates in B. subtilis is strongly stimulated by intracellular polyvalent anions. The absence of an anion permeability mechanism precludes succinate transport but partial escape from this restriction is mediated by the derepression of a phosphate transport system.  相似文献   

18.
Summary Zymomonas mobilis ATCC 29191 is able to degrade gluconate but cannot use it as a single carbon and energy source. Gluconate is phosphorylated by a gluconate kinase (EC 2.7.1.12) and the resulting 6-phosphogluconate is further catabolized to yield about 0.8 mol ethanol per mol of gluconate, considerable amounts of acetate and acetoin. This product spectrum agrees with the theoretical yield of only one reduction equivalent if gluconate is phosphorylated by a kinase and subsequently metabolized via the Entner-Doudoroff pathway.Furthermore, Z. mobilis contains a membrane-bound enzyme system which is able to oxidize glucose to gluconate. Cell-free extracts were active in an assay system with Wurster's blue as electron acceptor, and various aldoses as well as maltose, mannitol and sorbitol could be oxidized. The affinity for sorbitol was very low (K m =330 mM) but reasonable for glucose (K m =2.8 mM). The pH optimum for the glucose-oxidizing reaction was 6.5, while that for sorbitol oxidation was 5.5.Dedicated to Prof. Dr. H. Dörfel on the occasion of his 60th birthday  相似文献   

19.
After addition of 5 mM sulfite or nitrite to glucose-metabolizing cells of Saccharomyces cerevisiae a rapid decrease of the ATP content and an inversely proportional increase in the level of inorganic phosphate was observed. The concentration of ADP shows only small and transient changes. Cells of the yeast mutant pet 936, lacking mitochondrial F1ATPase, after addition of 5 mM sulfite or nitrite exhibit changes in ATP, ADP and inorganic phosphate very similar to those observed in wild type cells. They key enzyme of glucose degradation, glyceraldehyde-3-phosphate dehydrogenase was previously shown to be the most sulfiteor nitrite-sensitive enzyme of the glycolytic pathway. This enzyme shows the same sensitivity to sulfite or nitrite in cells of the mutant pet 936 as in wild type cells. It is concluded that the effects of sulfite or nitrite on ATP, ADP and inorganic phosphate are the result of inhibition of glyceraldehyde-3-phosphate dehydrogenase and not of inhibition of phosphorylation processes in the mitochondria. Levels of GTP, UTP and CTP show parallel changes to ATP. This is explained by the presence of very active nucleoside monophosphate kinases which cause a rapid exchange between the nucleoside phosphates. The effects of the sudden inhibition of glucose degradation by sulfite or nitrite on levels of ATP, ADP and inorganic phosphate are discussed in terms of the theory of Lynen (1942) on compensating phosphorylation and dephosphorylation in steady state glucose metabolizing yeast.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - Pi inorganic orthophosphate Dedicated to Prof. Dr. Hans Grisebach on the occasion of his sixtieth birthday  相似文献   

20.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号