首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections.  相似文献   

2.

Background

The introduction of the dengue virus (DENV) in Nepal is recent, first reports date back to 2004 from a Japanese traveller and limited information is available about DENV infection in the Nepali population. Within a decade after the first DENV detection, it is now endemic in multiple districts of Nepal with approximately 11.2 million people residing in the Terai belt being at risk of DENV infection. Sporadic cases of DENV infection have been reported every year for the past decade during the monsoon season, mainly in the Terai region.

Methods

Medline/Embase/Cochrane databases were reviewed for reports on the burden of dengue infection, diagnostic methods, and national surveillance.

Results

Four outbreaks were reported since 2004 including the diagnosis of all serotypes in 2006 and predominance of a single serotype in 2010 (DENV-1), 2013 (DENV-2), and 2016 (DENV-1). The clinical diagnoses showed a predominance of dengue fever while 4/917 (0.4%), 8/642 (1.2%) and 8/1615 (0.4%) dengue haemorrhagic fever/dengue shock syndrome cases were identified during the outbreaks in 2010, 2013 and 2016, respectively. The number of cases reported in males was significantly higher (67.4%) than in females. Disease occurrence was primarily found in the Terai region until 2010 and was increasingly detected in the Hilly region in 2016.

Conclusion

In Nepal currently weak diagnostic facilities, very limited research on mosquitoes vectors, and poor surveillance of dengue leading to inappropriate detection and control of DENV. We surmise that improved basic research and epidemiological training courses for local scientists and laboratory personal at national and international level will help better understand the evolution and distribution of DENV transmission and its eventual control.
  相似文献   

3.
4.

Background  

Within-host competition between strains of a vector-borne pathogen can affect strain frequencies in both the host and vector, thereby affecting viral population dynamics. However little is known about inter-strain competition in one of the most genetically diverse and epidemiologically important mosquito-borne RNA virus: dengue virus (DENV). To assess the strength and symmetry of intra-host competition among different strains of DENV, the effect of mixed infection of two DENV serotypes, DENV2 and DENV4, on the replication of each in cultured mosquito cells was tested. The number of infectious particles produced by each DENV strain in mixed infections was compared to that in single infections to determine whether replication of each strain was decreased in the presence of the other strain (i.e., competition). The two DENV strains were added to cells either simultaneously (coinfection) or with a 1 or 6-hour time lag between first and second serotype (superinfection).  相似文献   

5.
Dengue fever and dengue hemorrhagic fever are important diseases worldwide. Although antibody-dependent enhancement of infection has been proposed as a mechanism for increased disease severity, enhancing antibodies in endemic people have not been thoroughly investigated. Recently, we established a serological assay system to measure the balance of enhancing and neutralizing activities, which provides useful information for estimating in vivo antibody status. We measured the balance of these activities against four dengue virus (DENV) types in endemic populations, and analyzed the proportion of sera containing enhancing and neutralizing antibodies. Predominantly healthy Filipino children were used for analysis, although a population of Indonesian children was also investigated. In the Filipino population, the highest proportion of neutralizing activities was shown against DENV2, followed by DENV1. A greater proportion of sera exhibited enhancing rather than neutralizing antibodies against other virus types. Neutralizing activities were complement-dependent, while enhancing activities were complement-independent. The Indonesian population showed a similar dengue antibody status. Our results indicate that a relatively high proportion of endemic children possessed complement-independent enhancing antibodies against some DENV types.  相似文献   

6.

Background

Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.

Methods and Findings

Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1–19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children.

Conclusions

Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.  相似文献   

7.
8.
Dramatic increases in dengue (DEN) incidence and disease severity have been reported, in great part due to the geographic expansion of Aedes aegypti and Aedes albopictus mosquitoes. One result is the expanded co-circulation of all dengue 1-4 serotype viruses (DENV) in urban areas worldwide, especially in South and South-East Asia, and South America. DEN disease severity ranges from asymptomatic infections to febrile dengue fevers (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There is an urgent need for a safe and effective tetravalent DEN vaccine. Several live attenuated, tetravalent DEN vaccine candidates have been generated by recombinant DNA technology; these candidates are capable of providing immunity to all four DENV serotypes. In this paper we review (a) recombinant live-attenuated DEN vaccine candidates in terms of deletion, antigen chimerization, and the introduction of adaptive mutations; (b) strategies for improving tetravalent vaccine attenuation; and (c) live-attenuated DENV vaccine development.  相似文献   

9.
10.

Background  

Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G) interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1.  相似文献   

11.

Background

Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.

Methods and Findings

We evaluated serum samples from 80 residents of a dengue endemic country, Malaysia, for neutralizing activity, and infection-enhancing activity at 1∶10 serum dilution by using FcγR-negative BHK cells and FcγR-expressing BHK cells. The serum samples consisted of a panel of patients with acute DENV infection (31%, 25/80) and a panel of donors without acute DENV infection (69%, 55/80). A high proportion of the tested serum samples (75%, 60/80) demonstrated DENV neutralizing activity (PRNT50≥10) and infection-enhancing activity. Eleven of 18 serum samples from patients with acute secondary DENV infection demonstrated neutralizing activity to the infecting serotype determined by using FcγR-negative BHK cells (PRNT50≥10), but not when determined by using FcγR-expressing cells.

Conclusion

Human serum samples with low neutralizing activity determined by using FcγR-negative cells showed DENV infection-enhancing activity using FcγR-expressing cells, whereas those with high neutralizing activity determined by using FcγR-negative cells demonstrate low or no infection-enhancing activity using FcγR-expressing cells. The results suggest an inverse relationship between neutralizing antibody titer and infection-enhancing activity, and that neutralizing activity determined by using FcγR-expressing cells, and not the activity determined by using FcγR-negative cells, may better reflect protection to DENV infection in vivo.  相似文献   

12.
The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.  相似文献   

13.
Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations.Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved.  相似文献   

14.
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.  相似文献   

15.

Background

Dengue virus (DENV), a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB) probe approach was used to develop an improved real time RT-PCR (qRT-PCR) for DENV in this study.

Results

The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE), West Nile (WN), Chikungunya (CHK) viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples.

Conclusion

We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The ability of the assay to detect DENV-2 in inoculated mosquitoes makes it a potential tool for detecting DENV in field-caught mosquitoes.  相似文献   

16.
Recent disease outbreaks have raised awareness of tropical pathogens, especially mosquito-borne viruses. Dengue virus (DENV) is a widely studied mammalian pathogen transmitted by various species of mosquito in the genus Aedes, especially Aedes aegypti and Aedes albopictus. The prevailing view of the research community is that endemic viral lineages that cause epidemics of DENV in humans have emerged over time from sylvatic viral lineages, which persist in wild, non-human primates. These notions have been examined by researchers through phylogenetic analyses of the envelope gene (E) from the four serotypes of DENV (serotypes DENV-1 to DENV-4). In these previous reports, researchers used visual inspection of a phylogeny in order to assert that sylvatic lineages lead to endemic clades. In making this assertion, these researchers also reasserted the model of periodic sylvatic to endemic disease outbreaks. Since that study, there has been a significant increase in data both in terms of metadata (e.g., place and host of isolation) and genetic sequences of DENV. Here, we re-examine the model of sylvatic to endemic shifts in viral lineages through a phylogenetic tree search and character evolution study of metadata on the tree. We built a dataset of nucleotide sequences for 188 isolates of DENV that have metadata on sylvatic or endemic sampling along with three orthologous sequences from West Nile virus as the outgroup for the phylogenetic analysis. In contrast to previous research, we find that there are several shifts from endemic to sylvatic lineages as well as sylvatic to endemic lineages, indicating a much more dynamic model of evolution. We propose that a model that allows oscillation between sylvatic and endemic hosts better captures the dynamics of DENV transmission.  相似文献   

17.
Dengue virus (DENV) may cause symptomatic infection with mild, undifferentiated febrile illness called classical dengue fever (DF) or a more severe disease, potentially fatal, known as dengue hemorrhagic fever (DHF) or dengue shock syndrome. The pathogenesis of DHF is based on the virulence of the infecting DENV and depends on the infecting serotypes and genotypes; it is also based on the immunopathogenesis that is mediated by host immune responses, including dengue virus-cross-reactive antibodies that augment the severity of infections. Involvement of central nervous system (CNS) is extensively described. The present study describes the virulence of DENV-3 isolates in a mouse model by intracranial (i.c.) inoculation with genotypes I and III. Our data suggest that, in this experimental model, DENV-3 genotype I may have the propensity to cause neurological disease in mice, whereas the genotype III is associated with asymptomatic infection in mice. Additionally, the symptomatic mice show a decrease of white blood cell count, infectious DENV in the brains and alterations in levels of IFN-gamma, IL-6 and MCP-1. The results confirm the mouse model as a way to study the biology of DENV-3 isolates and to improve the knowledge about the neurovirulence of the different genotypes of DENV.  相似文献   

18.
BackgroundNo vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk.Conclusions/significanceOur data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia.  相似文献   

19.
Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months'' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV) serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.  相似文献   

20.

Background

First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva.

Methodology/Principal Findings

We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1.

Conclusions/Significance

In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号