首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The characterisation of virulence factors of Francisella tularensis has been hampered by the lack of genetic system for the bacterium. In this study, a shuttle vector was constructed that can replicate autonomously in F. tularensis and Escherichia coli . To obtain this vector, the p15A replication origin of E. coli plasmid pACYC184 was introduced into a plasmid derivative of plasmid pFNL200, a plasmid which only can replicate in F. tularensis . The resulting shuttle vector, designated pKK202, harboured resistance genes for chloramphenicol and tetracycline. This vector might be used as a basis for the studies of virulence factors of F. tularensis .  相似文献   

2.
Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.  相似文献   

3.
A promoter-probe plasmid suitable for use in Xanthomonas campestris pathovar campestris (causal agent of crucifer black rot) was constructed by ligating a broad host range IncQ replicon into the promoter-probe plasmid pKK232-8, which contains a promoterless chloramphenicol acetyltransferase gene. Xanthomonas chromosomal DNA fragments were 'shotgun' cloned into a restriction site in front of this gene, and the resulting library was transferred en masse into Xanthomonas. Individual transconjugants possessing DNA insertions with promoter activity in plants were identified by virtue of their ability to infect chloramphenicol-treated turnip seedlings. Of 19 transconjugants identified in this way five were chloramphenicol resistant both in turnip seedlings and on agar plates. However the remaining 14 were only chloramphenicol resistant in planta, and thus apparently contained plant-inducible promoter fragments. Resistance to chloramphenicol was correlated with increased chloramphenicol acetyltransferase activity for the transconjugants assayed. The promoter fragments were used to isolate genomic clones from a library, and the role of the genes contained in these clones in pathogenicity is being investigated.  相似文献   

4.
杨洋  沈萍 《遗传学报》2004,31(5):525-532
将来源于嗜盐古生菌——盐生盐杆菌(Halobacterium halobium)基因组的RM07 DNA片段以正反两个方向分别插入大肠杆菌启动子探针载体pKK232-8携带的报告基因——氯霉素抗性基因(cat)的上游,得到RM07-cat融合的质粒pRM07-1( )和pRM07-1(-),将其分别转入大肠杆菌HB101,进而检测了不同转化子菌株的氯霉素抗性水平和细胞内氯霉素乙酰转移酶蛋白质浓度。结果表明:正向的RM07片段在真细菌(大肠杆菌)中具有启动子活性,能够驱动cat报告基因的表达;而反向的RM07片段在大肠杆菌中不具有启动子活性。对RM07片段进行了定点诱变分析,检测了特定核苷酸突变对启动子活性的影响,结果进一步精确定位了RM07片段中对在大肠杆菌中的启动子功能有重要作用的关键碱基,并且通过改造RM07片段的碱基组成成分大幅提高了其在大肠杆菌中的启动子活性。  相似文献   

5.
Francisella tularensis, the causative agent of tularemia, is a category A biodefense agent. The examination of gene function in this organism is limited due to the lack of available controllable promoters. Here, we identify a promoter element of F. tularensis LVS that is repressed by glucose (termed the Francisella glucose-repressible promoter, or FGRp), allowing the management of downstream gene expression. In bacteria cultured in medium lacking glucose, this promoter induced the expression of a red fluorescent protein allele, tdtomato. FGRp activity was used to produce antisense RNA of iglC, an important virulence factor, which severely reduced IglC protein levels. Cultivation in glucose-containing medium restored IglC levels, indicating the usefulness of this promoter for controlling both exogenous and chromosomal gene expression. Moreover, FGRp was shown to be active during the infection of human macrophages by using the fluorescence reporter. In this environment, the FGRp-mediated expression of antisense iglC by F. tularensis LVS resulted in reduced bacterial fitness, demonstrating the applicability of this promoter. An analysis of the genomic sequence indicated that this promoter region controls a gene, FTL_0580, encoding a hypothetical protein. A deletion analysis determined the critical sites essential for FGRp activity to be located within a 44-bp region. This is the first report of a conditional promoter and the use of antisense constructs in F. tularensis, valuable genetic tools for studying gene function both in vitro and in vivo.  相似文献   

6.
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ~200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included 'druggable' targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.  相似文献   

7.
8.
Francisella tularensis is an obligate intracellular bacterium that induces severe, acute, often fatal disease when acquired by the respiratory route. Despite the seriousness of this pathogen, very little is understood about its interaction with key target cells in the airways and lungs (alveolar macrophages and airway dendritic cells (DC)) after inhalation. In this study we demonstrate replication of F. tularensis in primary DC. Early after infection, F. tularensis induced increased expression of MHC class II and CD86 on DC, but not macrophages. This was followed by depletion of DC from the airways and lungs. Despite logarithmic replication and phenotypic maturation of DC, F. tularensis failed to induce production of several key proinflammatory cytokines, including TNF-alpha and IL-6, from DC. However, F. tularensis infection did elicit production of the potent immunosuppressive cytokine, TGF-beta. Furthermore, F. tularensis actively suppressed the ability of DC to secrete cytokines in response to specific TLR agonists. Finally, we also found that infection of DC and macrophages in the lungs appears to actually increase the severity of pulmonary infection with F. tularensis. For example, depletion of airway DC and alveolar macrophages before infection resulted in significantly prolonged survival times. Together, these data suggest F. tularensis is able to selectively uncouple Ag-presenting functions from proinflammatory cytokine secretion by critical APCs in the lungs, which may serve to create a relatively immunosuppressive environment favorable to replication and dissemination of the organism.  相似文献   

9.
Natural strains of F. tularensis were characterized by sensitivity to 2,3,5-triphenyl tetrazolium chloride (TTC). Development of TTC resistance in the cells of F. tularensis was accompanied by changes in the biological properties of the culture, i.e. the colony morphology, antigenic structure, virulence and immunogenicity for laboratory animals. Moreover, there was a direct correlation between the levels of TTC resistance and resistance to chloramphenicol, erythromycin, tetracycline, furazolidone and rifampicin. The antibiotic resistant mutants of F. tularensis were in turn more resistant to TTC than the initial strains. This could be useful in isolation of polymarked strains of F. tularensis for genetic studies and investigation of the nature of the phenomenon of virulence in F. tularensis.  相似文献   

10.
A number of nonspecific resistance characteristics in mice, such as the total number of peritoneal exudate cells, the percentage and absolute number of macrophages, their cytochemical activity in the spontaneous tetrazolium test and cytochemical capacity, have been studied by comparison with the resistance of the animals to tularemia infection induced by Francisella tularensis, Ga?ski?'s vaccinal strain 15. Of these characteristics, the cytochemical capacity of peritoneal exudate macrophages, i.e. the total cytochemical activity of macrophages contained in a unit of volume, has been the most informative as regards the level of nonspecific resistance to this infection. Other characteristics under study cannot serve as criteria for the evaluation of the nonspecific resistance of the body to F. tularensis.  相似文献   

11.
Plasmid vectors for the selection of promoters   总被引:26,自引:0,他引:26  
J Brosius 《Gene》1984,27(2):151-160
  相似文献   

12.
A fundamental step in the life cycle of Francisella tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum nor the receptors that mediate infection of neutrophils have been defined. In this study, human neutrophil uptake of GFP-expressing F. tularensis strains live vaccine strain and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components, we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis, whereas C5 was not. Second, we used purification and immunodepletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-Ag and capsule as prominent targets of these Abs on the bacterial surface. Finally, we demonstrate using receptor-blocking Abs that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-Ag polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3 opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner.  相似文献   

13.
The bacterium Francisella tularensis is highly infective, and this is one of the chief attributes that has led to its development as a bioweapon. Establishment of infection requires efficient uptake of F. tularensis by host macrophages, which provide a safe in vivo environment for F. tularensis replication. Little is known, however, about the cellular entry mechanisms employed by this organism. This report shows that efficient uptake of F. tularensis live vaccine strain (LVS) by macrophages is dependent on a heat-sensitive serum component and is mediated in part by types I and II class A scavenger receptors (SRA), demonstrating for the first time that SRA can act as a receptor for opsonized pathogens. Specifically, uptake of serum-opsonized LVS was partially blocked by general scavenger receptor inhibitors [fucoidan and poly(I)] and was largely inhibited by a specific function-blocking antibody against SRA. A role for SRA in LVS binding was confirmed by showing that ectopic expression of SRA in human embryonic kidney cells conferred the capacity for robust serum-dependent LVS binding. Finally, SRA-/- macrophages ingested significantly fewer LVS than did macrophages from wild-type mice. These findings support a novel role for SRA in innate immunity and suggest a potential therapeutic approach for modulating F. tularensis infection, namely, blocking SRA as a means of hindering F. tularensis access to its intracellular niche.  相似文献   

14.
Sensitivity of 6 F. tularensis strains to 57 antibiotics and synthetic antibacterial drugs was studied. It was shown that the strains were highly sensitive to aminoglycosides, tetracyclines, anzamycins, quinolones, chloramphenicol, nitrofurantoin, nitroxoline, novobiocin and fusidin and resistant to penicillins, cephalosporins, polypeptides, vancomycin and sulfanylamides. The interrace differences in F. tularensis could be detected only by sensitivity to erythromycin, oleandomycin and spiramycin. There was observed no cross resistance to streptomycin and other aminoglycosides in F. tularensis. Assay of F. tularensis sensitivity to antibacterial drugs of various groups with the rapid photometric procedure and the agar diffusion method revealed that the results were highly comparable.  相似文献   

15.
土拉弗朗西斯菌与巨噬细胞膜的早期相互作用   总被引:1,自引:0,他引:1  
评估土拉弗朗西斯菌LVS在感染鼠巨噬细胞早期与细胞膜的相互作用。用表达GFP的土拉弗朗西斯菌LVS感染鼠巨噬细胞1774A1。结合单抗的小窝蛋白-1或转铁蛋白受体-1分别用键合了Alexa594的羊抗鼠二抗显色。土拉弗朗西斯菌疫苗株LVS可以诱导宿主细胞膜伸出伪足,将细菌吸收进入巨噬细胞。分布在细胞膜上的小窝蛋白-1和转铁蛋白受体-1参与巨噬细胞对弗朗西斯菌的摄入。这些发现说明,弗朗西斯菌进入巨噬细胞需要细胞膜微结构域和小窝蛋白;在感染早期转铁蛋白受体-1参与了细菌的摄入,这可能与弗朗西斯菌获取铁以利在胞内生存有关。  相似文献   

16.
Francisella tularensis is a highly virulent facultative intracellular pathogen that has been categorized as a class A bioterrorism agent, and is classified into four subsp, tularensis, holarctica, mediasiatica and novicida. Although the ability of F. tularensis subsp. novicida to cause tularemia in mice is similar to the virulent subsp. tularensis and holarctica, it is attenuated in humans. It is not known whether attenuation of F. tularensis subsp. novicida in humans is resulting from a different route of trafficking within human macrophages, compared with the tularensis or holarctica subsp. Here we show that in quiescent human monocytes-derived macrophages (hMDMs), the F. tularensis subsp. novicida containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes. This modulation of phagosome biogenesis by F. tularensis is followed by disruption of the phagosome at 4-12 h and subsequent bacterial escape into cytoplasm where the organism replicates. In IFN-gamma-activated hMDMs, intracellular replication of F. tularensis is completely inhibited, and is associated with failure of the organism to escape from the phagosome into the cytoplasm for up to 24 h after infection. In IFN-gamma-activated hMDMs, the FCPs acquire the lysosomal enzymes Cathepsin D, which is excluded in quiescent hMDMs. When the lysosomes of IFN-gamma-activated hMDMs are preload with Texas Red Ovalbumin or BSA-gold, the FCPs acquire both lysosomal tracers. In contrast, both lysosomal tracers are excluded from the FCPs within quiescent hMDMs. We conclude that although F. tularensis subsp. novicida is attenuated in humans, it modulates biogenesis of its phagosome into a late endosome-like compartment followed by bacterial escape into the cytoplasm within quiescent hMDMs, similar to the virulent subsp. tularensis. In IFN-gamma-activated hMDMs, the organism fails to escape into the cytoplasm and its phagosome fuses to lysosomes, similar to inert particles.  相似文献   

17.
18.
To further understand the role of LPS in the pathogenesis of Francisella infection, we characterized murine infection with F. novicida, and compared immunobiological activities of F. novicida LPS and the LPS from F. tularensis live vaccine strain (LVS). F. novicida had a lower intradermal LD(50) in BALB/cByJ mice than F. tularensis LVS, and mice given a lethal F. novicida dose intraperitoneally died faster than those given the same lethal F. tularensis LVS dose. However, the pattern of in vivo dissemination was similar, and in vitro growth of both bacteria in bone marrow-derived macrophages was comparable. F. novicida LPS stimulated very modest in vitro proliferation of mouse splenocytes at high doses, but F. tularensis LVS LPS did not. Murine bone marrow macrophages treated in vitro with F. novicida LPS produced IL12 and TNF-alpha, but did not produce detectable interferon-gamma, IL10, or nitric oxide; in contrast, murine macrophages treated with F. tularensis LVS LPS produced none of these mediators. In contrast to clear differences in stimulation of proliferation and especially cytokines, both types of purified LPS stimulated early protection against lethal challenge of mice with F. tularensis LVS, but not against lethal challenge with F. novicida. Thus, although LPS recognition may not be a major factor in engendering protection, the ability of F. novicida LPS to stimulate the production of proinflammatory cytokines including TNF-alpha likely contributes to the increased virulence for mice of F. novicida compared to F. tularensis LVS.  相似文献   

19.
A method for allelic replacement in Francisella tularensis   总被引:10,自引:0,他引:10  
A vector for mutagenesis of Francisella tularensis was constructed based on the pUC19 plasmid. By inserting the sacB gene of Bacillus subtilis, oriT of plasmid RP4, and a chloramphenicol resistance gene of Shigella flexneri, a vector, pPV, was obtained that allowed specific mutagenesis. A protocol was developed that allowed introduction of the vector into the live vaccine strain, LVS, of F. tularensis by conjugation. As a proof of principle, we aimed to develop a specific mutant defective in expression of a 23-kDa protein (iglC) that we previously have shown to be prominently upregulated during intracellular growth of F. tularensis. A plasmid designated pPV-DeltaiglC was developed that contained only the regions flanking the encoding gene, iglC. By a double crossover event, the chromosomal iglC gene was deleted. However, the resulting strain, denoted DeltaiglC1, still had an intact iglC gene. Southern blot analysis verified that LVS harbors two copies for the iglC gene. The mutagenesis was therefore repeated and a mutant defective in both iglC alleles, designated DeltaiglC1+2, was obtained. The DeltaiglC1+2 strain, in contrast to DeltaiglC1, was shown to display impaired intracellular macrophage growth and to be attenuated for virulence in mice. The developed genetic system has the potential to provide a tool to elucidate virulence mechanisms of F. tularensis and the specific F. tularensis mutant illustrates the critical role of the 23-kDa protein, iglC, for the virulence of F. tularensis LVS.  相似文献   

20.
Rasko DA  Esteban CD  Sperandio V 《Plasmid》2007,58(2):159-166
Francisella tularensis is a category A bioterror pathogen which in some cases can cause a severe and fatal human infection. Very few virulence factors are known in this species due to the difficulty in working with it as well as the lack of tools for genetic manipulation. This work describes the construction of a shuttle vector that can replicate in Escherichia coli and F. tularensis as well as two distinct promoter trap constructs based on the shuttle vector backbone. Replication in F. tularensis is based on the promiscuous origin of replication from the Staphylococcus aureus plasmid pC194. We demonstrate the novel plasmids can coexist with established F. tularensis vectors based on the pFNL10 plasmid, the current workhorse of F. tularensis genetics. Our promoter trap can identify promoters that are activated during intracellular growth and survival. These new vectors provide additional tools for the genetic manipulation of F. tularensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号