首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of 14C-labelled guanosine and xanthosine into riboflavin was studied. It is concluded that the ribose mojety of guanosine is converted to the ribityl side chain of riboflavin. Thus the immediate precursor of riboflavin biosynthesis is a guanosine compound. Two classes of the riboflavin-dependent mutants of Bacillus subtilis were studied. They are closely linked to the lysine markers and probably correspond to the initial steps of riboflavin biosynthesis pathway.  相似文献   

2.
The 5,6-dimethylbenzimidazole moiety of vitamin B12 is formed from riboflavin in aerobic and some aerotolerant bacteria. Thereby C1' of riboflavin is transformed into C2 of the vitamin B12 base. In the present publication a study on this transformation with riboflavin 2H-labeled in the 1'R or 1'S position is described. This study was undertaken in order to find out if one of the two hydrogens at C1' is transferred to C2 of 5,6-dimethylbenzimidazole. The 2H-labeled riboflavin samples were synthesized starting from unlabeled or 1-2H-labeled ribose and 3,4-dimethylaniline yielding N-beta-D-ribopyranosyl-3,4-dimethylaniline. The unlabeled riboside was reduced to N-D-ribityl-3,4-dimethylaniline with sodium cyanoborotrideuteride, the 2H-labeled riboside with sodium cyanoborohydride. The ribityl derivatives were transformed into N-D-ribityl-2-phenylazo-4,5-dimethylaniline, and condensed with barbituric acid to riboflavin. The reduction of the ribosyl compound to the ribityl derivative is only partially stereospecific. Thus the riboflavin synthesized from unlabeled ribose had a 2H ratio of 3/1 (1'R/1'S), the riboflavin obtained from D-[1-2H1]ribose of 1/3 (1'R/1'S). The 2H content in these positions was determined from the 1H-NMR spectra. These spectra showed also that 1 mol 2H/mol riboflavin was present in position 1'. The deuterated riboflavin samples were incubated under aerobic conditions with broken cell preparations of Propionibacterium shermanii. The deuterium content of the 5,6-dimethylbenzimidazole isolated was determined by mass spectrometry and by 1H NMR. These measurements revealed that the hydrogen in the pro-S position at C1' of riboflavin is retained during 5,6-dimethylbenzimidazole formation, and is thus found at C2 of this base.  相似文献   

3.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5' of the ribityl side chain. The lumazine 5'-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

4.
In addition to 8alpha-(N3-histidyl)riboflavin, 8alpha-(N1-histidyl)riboflavin is also formed during the reaction of Nalpha-blocked histidine with 8alpha-bromotetraacetylriboflavin in a yield of 20-25% of the total histidylflavin fraction. The properties of 8alpha-(N1-histidyl)riboflavin are inditical with those of the histidylflavin isolated from thiamine dehydrogenase and beta-cyclopiazonate oxidocyclase but differ from those of 8alpha-(N3-histidyl)riboflavin. These properties include pKa of fluorescence quenching, electrophoretic mobility at pH 5.0, stability to storage, and reduction by NaBH4. Proof for 8alpha substitution is shown by the electron paramagnetic resonance and electron-nuclear double resonance spectra of the cationic semiquinone form, as well as by the proton magnetic resonance spectrum of the oxidized form. The site of histidine substitution by the 8alpha-methylene of the flavin moiety was shown by methylation of the imidazole ring with methyl iodide, cleavage of the methylhistidine-flavin bond by acid hydrolysis at 150 degrees C, and identification of the methylhistidine isomer by electrophoresis. 3-Methylhistidine is the product from the N1-histidylflavin isomer, while 1-methylhistidine is produced from the N3 isomer. The flavin product from reductive Zn cleavage of either isomer has been identified as riboflavin. The compound obtained on acid treatment of 8alpha-(N3-histidyl)riboflavin (previously thought to be the N1 isomer) differs from the parent compound only in the ribityl side chain, since chemical degradation studies show 1-methylhistidine as a product and a flavin product which differs from riboflavin only in mobility in thin-layer chromatography, but not in absorption, fluorescence, and electron paramagnetic resonance spectral properties. Proof that acid modification involves only the ribityl chain has come from the observations that alkaline irradiation of this flavin yields lumiflavin, that the proton magnetic resonance spectrum of the compound differs from that of riboflavin in the region of the ribityl proton resonance, and that its periodate titer is lower than that of authentic riboflavin. The identity of 8alpha-(N1-histidyl)riboflavin with the histidylflavin from thiamine dehydrogenase and beta-cyclopiazonate oxidocyclase shows that both isomeric forms of 8alpha-histidylflavin occur in nature.  相似文献   

5.
Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.  相似文献   

6.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5′ of the ribityl side chain. The lumazine 5′-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

7.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

8.
The redox potential of deazariboflavin has been determined for pH values from 5.5 to 9.2 by equilibration with riboflavin and lumiflavin 3-acetate. The position of the equilibrium with riboflavin was measured spectrophotometrically and fluorimetrically; the equilibrium potential with lumiflavin 3-acetate was measured spectrophotometrically and potentiometrically. The Em7 for deazariboflavin was found to be--0.273 +/- 0.003 V against the standard hydrogen electrode. Equilibrium with flavodoxin at pH 9.5 and 10.0 was also used to determine the redox potential of deazariboflavin at high pH values. The pK of dihydrodeazariboflavin was found from the break in the potential vs. pH diagram and from spectrophotometric pH titration. The pK value obtained by both methods is 7.00 +/- 0.05. We found that borate, a product of the reducing agent borohydride, complexed with the ribityl sidechain of deazariboflavin, causing a shift in the pK for the reduced form to values of about 8.  相似文献   

9.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

10.
Flavokinase (ATP:riboflavin 5'-phosphotransferase) [EC 2.7.1.26] was purified to apparent homogeneity from rat intestinal mucosa by fractionation with ammonium sulfate, gel filtration, and flavin affinity chromatography. The addition of ATP to the enzyme solution was necessary for its binding to the affinity gel. The apparent molecular weight of the enzyme was estimated to be 13,500 by gel filtration on Sephadex G-100 and by SDS-PAGE. The properties of the enzyme, including its flavin specificity, were studied. Three types of riboflavin analogues were used for the flavin specificity study; namely, ones modified at the ribityl group, and at positions 3 and 8 of the isoalloxazine ring. Of the analogues modified at the ribityl group or position 3 of the isoalloxazine ring, only 2'-deoxyriboflavin was phosphorylated and then only weakly. On the other hand, most analogues modified at position 8 of the isoalloxazine ring were good substrates for the kinase, an appropriate increase in the substituent volume at position 8 of the isoalloxazine ring resulting in an increase in the Vmax value. In a previous paper on the mechanism of intestinal absorption of riboflavin, we proposed that one of the specific processes for the absorption of riboflavin is phosphorylation by flavokinase [Kasai, S. et al. (1988) J. Nutr. Sci. Vitaminol. 34, 265-280]. The present results support this conclusion because analogues that were absorbed at low concentrations through a process specific for riboflavin in our previous study were phosphorylated effectively by the enzyme, whereas those that were absorbed solely through simple diffusion at all concentrations were not phosphorylated or only phosphorylated weakly. The properties of the flavokinases from intestinal mucosa and liver were compared.  相似文献   

11.
The influence of the amino acid residues surrounding the flavin ring in the flavodoxin of the cyanobacterium Anabaena PCC 7119 on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues Trp(57) and Tyr(94) at the FMN binding site. Neutral semiquinone radicals of the proteins were obtained by photoreduction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies. Significant differences in electron density distribution were observed in the flavodoxin mutants Trp(57) --> Ala and Tyr(94) --> Ala. The results indicate that the presence of a bulky residue (either aromatic or aliphatic) at position 57, as compared with an alanine, decreases the electron spin density in the nuclei of the benzene flavin ring, whereas an aromatic residue at position 94 increases the electron spin density at positions N(5) and C(6) of the flavin ring. The influence of the FMN ribityl and phosphate on the flavin semiquinone was determined by reconstituting apoflavodoxin samples with riboflavin and with lumiflavin. The coupling parameters of the different nuclei of the isoalloxazine group, as detected by ENDOR and HYSCORE, were very similar to those of the native flavodoxin. This indicates that the protein conformation around the flavin ring and the electron density distribution in the semiquinone form are not influenced by the phosphate and the ribityl of FMN.  相似文献   

12.
A new flavin metabolite comprising approximately 5% of the total flavin of human urine was isolated and characterized using absorption and fluorescence spectra, oxidation-reduction and hydrolysis data, and ninhydrin reactions. The flavin is a derivative associated with a peptide residue in ester linkage from an amino acid carboxyl to the ribityl chain of riboflavin, probably at the 5'-terminus.  相似文献   

13.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

14.
Feeding experiments with Ashbya gossypii followed by NMR analysis of the resulting riboflavin showed incorporation of deuterium from D-[2-2H]ribose at C-2' and from D-[1-2H]ribose in the pro-R position at C-1' of the ribityl side chain. The results rule out an Amadori rearrangement mechanism for the reduction of the ribosylamino to the ribitylamino linkage and point to formation of a Schiff base that is reduced stereospecifically opposite to the face from which the oxygen has departed. As prerequisite for the analysis, the 1H NMR signals for the pro-R and pro-S hydrogens at C-1' of 6,7-dimethyl-8-ribityllumazine and riboflavin and its tetraacetate were assigned with the aid of synthetic stereospecifically deuteriated samples.  相似文献   

15.
Thymocyte growth peptide (TGP) promotes DNA synthesis of immature thymocytes. TGP has been purified from sheep, human and calf thymus and recently characterized as an N-terminally blocked nonapeptide. Evidence is presented here that the blocking moiety consists of a formylpteroyl group bound to the N-terminal glutamyl residue of the nonapeptide. The pterin part of the TGP molecule has a ribityl substituent in analogy with riboflavin, which explains the pronounced hydrophilic property of TGP in contrast to unsubstituted and unconjugated folates. The compound can be classified as a ribofolate peptide, a novel class of growth factor. Zn2+ counteracts degradation of the molecule and is required for full biological activity; mass spectrometric data confirm that native TGP contains zinc.  相似文献   

16.
The essential redox cofactors riboflavin monophosphate (FMN) and flavin adenine dinucleotide (FAD) are synthesised from their precursor, riboflavin, in sequential reactions by the metal-dependent riboflavin kinase and FAD synthetase. Here, we describe the 1.6A crystal structure of the Schizosaccharomyces pombe riboflavin kinase. The enzyme represents a novel family of phosphoryl transferring enzymes. It is a monomer comprising a central beta-barrel clasped on one side by two C-terminal helices that display an L-like shape. The opposite side of the beta-barrel serves as a platform for substrate binding as demonstrated by complexes with ADP and FMN. Formation of the ATP-binding site requires significant rearrangements in a short alpha-helix as compared to the substrate free form. The diphosphate moiety of ADP is covered by the glycine-rich flap I formed from parts of this alpha-helix. In contrast, no significant changes are observed upon binding of riboflavin. The ribityl side-chain might be covered by a rather flexible flap II. The unusual metal-binding site involves, in addition to the ADP phosphates, only the strictly conserved Thr45. This may explain the preference for zinc observed in vitro.  相似文献   

17.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   

18.
The open reading frame MJ1184 of Methanococcus jannaschii with similarity to riboflavin synthase of Methanothermobacter thermoautotrophicus was cloned into an expression vector but was poorly expressed in an Escherichia coli host strain. However, a synthetic open reading frame that was optimized for expression in E.coli directed the synthesis of abundant amounts of a protein with an apparent subunit mass of 17.5 kDa. The protein was purified to apparent homogeneity. Hydrodynamic studies indicated a relative mass of 88 kDa suggesting a homopentamer structure. The enzyme was shown to catalyze the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 24 nmol mg(-1) min(-1) at 40 degrees C. Divalent metal ions, preferably manganese or magnesium, are required for maximum activity. In contrast to pentameric archaeal type riboflavin synthases, orthologs from plants, fungi and eubacteria are trimeric proteins characterized by an internal sequence repeat with similar folding patterns. In these organisms the reaction is achieved by binding the two substrate molecules in an antiparallel orientation. With the enzyme of M.jannaschii, 13C NMR spectroscopy with 13C-labeled 6,7-dimethyl-8-ribityllumazine samples as substrates showed that the regiochemistry of the dismutation reaction is the same as observed in eubacteria and eukaryotes, however, in a non-pseudo-c2 symmetric environment. Whereas the riboflavin synthases of M.jannaschii and M.thermoautotrophicus are devoid of similarity with those of eubacteria and eukaryotes, they have significant sequence similarity with 6,7-dimethyl-8-ribityllumazine synthases catalyzing the penultimate step of riboflavin biosynthesis. 6,7-Dimethyl-8-ribityllumazine synthase and the archaeal riboflavin synthase appear to have diverged early in the evolution of Archaea from a common ancestor. Some Archaea have eubacterial type riboflavin synthases which may have been acquired by lateral gene transfer.  相似文献   

19.
Numerous operator-constitutive mutants of riboflavin biosynthesis were selected. All of them map in a short region of the Bacillus subtilis chromosome. The yield of riboflavin synthetase from this mutant is different, but in most cases much lower than the maximal yield from a repressor minus strain. Our tentative explanation is a partial overlap of the sites for the adsorption of repressor and RNA-polymerase. Therefore the affinity to the transcribing enzyme is diminished in the operator constitutive strains. The affinity of the repressor-effector complex to the operator depends on the effector structure.  相似文献   

20.
Beta-Cyclopiazonate oxidocyclase from Penicillium cyclopium has been previously shown to contain flavin dinucleotide in covalent linkage to the protein. In the present study, a pure flavin mononucleotide peptide was isolated from the enzyme by tryptic-chymotryptic digestion, chromatography on Florisil and on diethylaminoethylcellulose, and hydrolysis with nucleotide pyrophosphatase. The flavin peptide contains 9 amino acids, including histidine in linkage to the flavin, and Asx as the N-terminal residue. The fluorescence of the flavin in the FMN peptide is profoundly quenched even at pH 3.2, where protonation of the imidazole prevents queching of the flavin fluorescence by histidine. This quenching appears to be due to interaction of the flavin with a tryptophan residue, as the quenching is abolished by oxidation of the tryptophan with performic acid. Similarly, the fluorescence of the tryptophan in the peptide is quenched, presumably by the flavin. The flavin of beta-cyclopiazonate oxidocylcase is attached, by the way of the 8alpha-methylene group, to the imidazole ring of a histidine. The aminoacylflavin isolated from the enzyme is identical in the pKa of its imidazole group, in reduction by NaBH4, and in other properties with synthetic 8alpha-(N1-histidyl)riboflavin. The pKa of the histidylriboflavin component of the oxidocyclase is 5.2 before and 5.0 after acid modification of the ribityl chain, as is found in the synthetic derivative. It is concluded that the enzyme contains the N1 isomer of histidylriboflavin and that acid hydrolysis of flavin peptides isolated from the oxidocyclase, while liberating histidylriboflavin, also causes acid modification of the ribityl chain of the flavin moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号