首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triglyceride synthesis in mammalian tissues requires glycerol 3-phosphate as the source of triglyceride glycerol. In this study the relative contribution of glyceroneogenesis and glycolysis to triglyceride glycerol synthesis was quantified in vivo in adipose tissue, skeletal muscle, and liver of the rat in response to a chow diet (controls), 48-h fast, and lipogenic (high sucrose) diet. The rate of glyceroneogenesis was quantified using the tritium ([(3)H(2)]O) labeling of body water, and the contribution of glucose, via glycolysis, was determined using a [U-(14)C]glucose tracer. In epididymal and mesenteric adipose tissue of control rats, glyceroneogenesis accounted for approximately 90% of triglyceride glycerol synthesis. Fasting for 48 h did not alter glyceroneogenesis in adipose tissue, whereas the contribution of glucose was negligible. In response to sucrose feeding, the synthesis of triglyceride glycerol via both glyceroneogenesis and glycolysis nearly doubled (versus controls); however, glyceroneogenesis remained quantitatively higher as compared with the contribution of glucose. Enhancement of triglyceride-fatty acid cycling by epinephrine infusion resulted in a higher rate of glyceroneogenesis in adipose tissue, as compared with controls, whereas the contribution of glucose via glycolysis was not measurable. Glyceroneogenesis provided the majority of triglyceride glycerol in the gastrocnemius and soleus. In the liver the fractional contribution of glyceroneogenesis remained constant (approximately 60%) under all conditions and was higher than that of glucose. Thus, glyceroneogenesis, in contrast to glucose, via glycolysis, is quantitatively the predominant source of triglyceride glycerol in adipose tissue, skeletal muscle, and liver of the rat during fasting and high sucrose feeding.  相似文献   

2.
Glyceroneogenesis, i.e. the synthesis of the glycerol moiety of triacylglycerol from pyruvate, has been suggested to be quantitatively important in both the liver and adipose tissue during fasting. However, the actual contribution of glyceroneogenesis to triacylglycerol synthesis has not been quantified in vivo in human studies. In the present study we have measured the contribution of glycerol and pyruvate to in vivo synthesis of hepatic triacylglycerol in nonpregnant and pregnant women after an overnight fast. Five nonpregnant women were administered [(13)C(3)]glycerol tracer as prime constant rate infusion, and the appearance of tracer in plasma glucose and triacylglycerol was quantified using gas chromatography-mass spectrometry. The contribution of pyruvate to hepatic triacylglycerol was quantified in nonpregnant and pregnant women using the deuterium labeling of body water method. The appearance of [(2)H] in hydrogens on C(1) and C(3) of triacylglycerol was measured following periodate oxidation of the glycerol isolated from hydrolyzed triacylglycerol. After a 16-h fast, approximately 6.1% of the plasma triacylglycerol pool was derived from plasma glycerol, whereas 10 to 60% was derived from pyruvate in nonpregnant women and pregnant women early in gestation. Our data suggest that glyceroneogenesis from pyruvate is quantitatively a major contributor to plasma triacylglycerol synthesis and may be important for the regulation of very low density lipoprotein triacylglycerol production. Our data also suggest that 3-glycerol phosphate is in rapid equilibrium with the triosephosphate pool, resulting in rapid labeling of the triose pool by the administered tracer glycerol. Because the rate of flux of triosephosphate to glucose during fasting far exceeds that to triacylglycerol, more glycerol ends up in glucose than in triacylglycerol. Alternatively, there may be two distinct pools of 3-glycerol phosphate in the liver, one involved in generating triosephosphate from glycerol and the other involved in glyceride-glycerol synthesis.  相似文献   

3.
Brown adipose tissue (BAT) glyceroneogenesis was evaluated in rats either fasted for 48 h or with streptozotocin-diabetes induced 3 days previously or adapted for 20 days to a high-protein, carbohydrate-free (HP) diet, conditions in which BAT glucose utilization is reduced. The three treatments induced an increase in BAT glyceroneogenic activity, evidenced by increased rates of incorporation of [1-14C]pyruvate into triacylglycerol (TAG)-glycerol in vitro and a marked, threefold increase in the activity of BAT phosphoenolpyruvate carboxykinase (PEPCK). BAT glycerokinase activity was not significantly affected by fasting or diabetes. After unilateral BAT denervation of rats fed either the HP or a balanced diet, glyceroneogenesis activity increased in denervated pads, evidenced by increased rates of nonglucose carbon incorporation into TAG-glycerol in vivo (difference between 3H2O and [14C]glucose incorporations) and of [1-14C]pyruvate in vitro. PEPCK activity was not significantly affected by denervation. The data suggest that BAT glyceroneogenesis is not under sympathetic control but is sensitive to hormonal/metabolic factors. In situations of reduced glucose use there is an increase in BAT glyceroneogenesis that may compensate the decreased generation of glycerol-3-phosphate from the hexose.  相似文献   

4.
A method is presented for measurement of triglyceride (TG) synthesis that can be applied to slow-turnover lipids. The glycerol moiety of TG is labeled from 2H2O, and mass isotopomer distribution analysis (MIDA) is applied. Mice and rats were given 4-8% 2H2O in drinking water; TG-glycerol was isolated from adipose and liver during < or =12-wk of 2H2O labeling. Mass isotopomer abundances in the glycerol moiety of TG were measured by GC-MS. The combinatorial pattern of isotopomers revealed the number of H atoms in glycerol incorporating label from 2H2O (n) to be 3.8-4.0 of a possible 5 for adipose tissue and 4.6-4.8 for liver TG. Hepatic TG-glycerol in fact reached 97% predicted maximal value of label incorporation (4.4-4.6 x body 2H2O enrichment), indicating near-complete replacement of the liver TG pool. Label incorporation into adipose tissue revealed turnover of mesenteric TG to be faster (k = 0.21 day-1) than other depots (k = 0.04-0.06 day-1) in mice. TG isolated from subcutaneous depots of growing adult rats plateaued at 85-90% of calculated maximal values at 12 wk (k = 0.05 day-1), excluding significant dilution by unlabeled alpha-glycerol phosphate. Turnover of plasma TG, modeled from 2H incorporation over 60 min, was 0.06 min-1 (half-life 11.5 min). In summary, use of 2H2O labeling with MIDA of TG-glycerol allows measurement of new alpha-glycerol phosphate-derived TG synthesis and turnover. The hypothesis that mesenteric TG is more lipolytically active than other depots, previously difficult to prove by isotope dilution techniques, was confirmed by this label incorporation approach.  相似文献   

5.
Glyceroneogenesis revisited   总被引:4,自引:0,他引:4  
Hanson RW  Reshef L 《Biochimie》2003,85(12):1199-1205
  相似文献   

6.
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.  相似文献   

7.
Calorie restriction (CR) affects adipocyte function and reduces body weight. However, the effects of alternate-day fasting (ADF) on adipose biology remain unclear. This study examined the effects of ADF and modified ADF regimens on adipocyte size, triglyceride (TG) metabolism, and adiponectin levels in relation to changes in body weight and adipose mass. Twenty-four male C57BL/6J mice were randomized for 4 weeks among 1) ADF-25% (25% CR on fast day, ad libitum on alternate day), 2) ADF-50% (50% CR on fast day), 3) ADF-100% (100% CR on fast day), and 4) control (ad libitum). The body weight of ADF-100% mice was lower than that of the other groups (P < 0.005) after treatment. Adipose tissue weights did not change. Inguinal and epididymal fat cells were 35-50% smaller (P < 0.01) than those of controls in ADF-50% and ADF-100% animals after treatment. Net lipolysis was augmented (P < 0.05) in ADF-100% mice, and the contribution from glyceroneogenesis to alpha-glycerol phosphate increased in ADF-50% and ADF-100% mice, whereas fractional and absolute de novo lipogenesis also increased in ADF-50% and ADF-100% animals, consistent with an alternating feast-fast milieu. Plasma adiponectin levels were not affected. In summary, modified ADF (ADF-50%) and complete ADF (ADF-100%) regimens modulate adipocyte function, despite there being no change in body weight or adipose tissue weight in the former group.  相似文献   

8.
Hormone-sensitive lipase (HSL) is rate limiting for diacylglycerol and cholesteryl ester hydrolysis in adipose tissue and essential for complete hormone-stimulated lipolysis. Gene expression profiling in HSL-/- mice suggests that HSL is important for modulating adipogenesis and adipose metabolism. To test whether HSL is required for the supply of intrinsic ligands for PPARγ for normal adipose differentiation, HSL-/- and wild-type (WT) littermates were fed normal chow (NC) and high-fat (HF) diets supplemented with or without rosiglitazone (200 mg/kg) for 16 weeks. Results show that supplementing rosiglitazone to an NC diet completely normalized the decreased body weight and adipose depots in HSL-/- mice. Additionally, rosiglitazone resulted in similar serum glucose, total cholesterol, FFA, and adiponectin values in WT and HSL-/- mice. Furthermore, rosiglitazone normalized the expression of genes involved in adipocyte differentiation, markers of adipocyte differentiation, and enzymes involved in triacylglycerol synthesis and metabolism, and cholesteryl ester homeostasis, in HSL-/- mice. Supplementing rosiglitazone to an HF diet resulted in improved glucose tolerance in both WT and HSL-/- animals and also partial normalization in HSL-/- mice of abnormal WAT gene expression, serum chemistries, organ and body weight changes. In vitro studies showed that adipocytes from WT animals can provide ligands for activation of PPARγ and that activation is further boosted following lipolytic stimulation, whereas adipocytes from HSL-/- mice displayed attenuated activation of PPARγ, with no change following lipolytic stimulation. These results suggest that one of the mechanisms by which HSL modulates adipose metabolism is by providing intrinsic ligands or pro-ligands for PPARγ.  相似文献   

9.
1. The effects of dietary modification, including starvation, and of corticotropin injection on the activities of acyl-CoA synthetase, glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate phosphohydrolase, diacylglycerol acyltransferase and lipoprotein lipase were measured in adipose tissue. 2. Lipoprotein lipase activities in heart were increased and those in adipose tissue were decreased when rats were fed on diets enriched with corn oil or beef tallow rather than with sucrose or starch. The lipoprotein lipase activity was lower in the adipose tissue of rats fed on the sucrose rather than on the starch diet. 3. Rats fed on the beef tallow diet had slightly higher activities of the total glycerol phosphate acyltransferase in adipose tissue than did rats fed on the sucrose or starch diet. The diacylglycerol acyltransferase and the mitochondrial glycerol phosphate acyltransferase activities were higher for the rats fed on the tallow diet than for those fed on the corn-oil diet. 4. Starvation significantly decreased the activities of lipoprotein lipase (after 24 and 48 h), acyl-CoA synthetase (after 24 h) and of the mitochondrial glycerol phosphate acyltransferase and the N-ethylmaleimide-insensitive dihydroxyacetone phosphate acyltransferase (after 48 h) in adipose tissue. The activities of the microsomal glycerol phosphate acyltransferase, diacylglycerol acyltransferase and the soluble phosphatidate phosphohydrolase were not significantly changed after 24 or 48 h of starvation. 5. The activities of lipoprotein lipase and phosphatidate phosphohydrolase in adipose tissue were decreased 15 min after corticotropin was injected into rats during November to December. No statistically significant differences were found when these experiments were performed during March to September. These differences may be related to the seasonal variation in acute lipolytic responses. 6. These results are discussed in relation to the control of triacylglycerol synthesis and lipoprotein metabolism.  相似文献   

10.
1. Measurements were made of the activities of nine glycolytic enzymes in epididymal adipose tissues obtained from rats that had undergone one of the following treatments: starvation; starvation followed by re-feeding with bread or high-fat diet; feeding with fat without preliminary starvation; alloxan-diabetes; alloxan-diabetes followed by insulin therapy. 2. In general, the activities of the glycolytic enzymes of adipose tissue, unlike those of liver, were not greatly affected by the above treatments. 3. The ;key' glycolytic enzymes, phosphofructokinase and pyruvate kinase, were generally no more adaptive in response to physiological factors than other glycolytic enzymes such as glucose phosphate isomerase, fructose diphosphate aldolase, triose phosphate isomerase, glycerol 3-phosphate dehydrogenase, phosphoglycerate kinase and lactate dehydrogenase. 4. Adiposetissue pyruvate kinase did not respond to feeding with fat in a manner similar to the liver enzyme. 5. Glyceraldehyde phosphate dehydrogenase had a behaviour pattern unlike the other eight glycolytic enzymes studied in that its activity was depressed by feeding with fat and was not restored to normal by re-feeding with a high-fat diet after starvation. These results are discussed in relation to the requirements of adipose tissue for glycerol phosphate in the esterification of fatty acids. 6. A statistical analysis of the results permitted the writing of linear equations describing the relationships between the activities of eight of the enzymes studied. 7. Evidence is presented for the existence of two constant-proportion groups amongst the enzymes studied, namely (i) glucose phosphate isomerase, phosphoglycerate kinase and lactate dehydrogenase, and (ii) triose phosphate isomerase, fructose diphosphate aldolase and pyruvate kinase. 8. Mechanisms for maintaining the observed relationships between the activities of the enzymes in the tissue are discussed.  相似文献   

11.
12.
The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity - i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P - was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.  相似文献   

13.
Control of fatty acid homeostasis is crucial to prevent insulin resistance. During fasting, the plasma fatty acid level depends on triglyceride lipolysis and fatty acid re-esterification within fat cells. In rodents, Rosiglitazone controls fatty acid homeostasis by stimulating two pathways in the adipocytes, glyceroneogenesis and glycerol phosphorylation, that provide the glycerol 3-phosphate necessary for fatty acid re-esterification. Here, we analyzed the functionality of both pathways for controlling fatty acid release in subcutaneous adipose tissue samples from lean and overweight women before and after Rosiglitazone ex vivo treatment. In controls, pyruvate, used as a substrate of glyceroneogenesis, could contribute to the re-esterification of up to 65% of the fatty acids released after basal lipolysis, whereas glycerol phosphorylation accounted for only 14 +/- 9%. However, the efficiency of glyceroneogenesis diminished as body mass index (BMI) of women increased. After Rosiglitazone treatment, increase of either pyruvate- or glycerol-dependent fatty acid re-esterification was strictly correlated to that of phosphoenolpyruvate carboxykinase and glycerol kinase, the key enzymes of each pathway, but depended on BMI of the women. Whereas the Rosiglitazone responsiveness of glyceroneogenesis was rather constant according to the BMI of the women, glycerol phosphorylation was mostly enhanced in lean women (BMI < 27). Overall, these data indicate that, whereas glyceroneogenesis is more utilized than glycerol phosphorylation for fatty acid re-esterification in human subcutaneous adipose tissue in the physiological situation, both are solicited in response to Rosiglitazone but with lower efficiency when BMI is increased.  相似文献   

14.
Flow-injection enzymatic analysis for glycerol and triacylglycerol   总被引:2,自引:0,他引:2  
A flow-injection enzymatic analytical system was developed for determination of glycerol and triacylglycerol based on enzymatic reactions in capillary followed by electrochemical detection. The hydrogen peroxide produced from the enzyme reaction was monitored by a platinum-based electrochemical probe. Different immobilization strategies on silica support were studied. The best and most effective configuration found for the measurement of glycerol and triacylglycerols in this system was the tandem connection of a lipase column and a silica-fused capillary column coimmobilized with glycerokinase (GK) and glycerol-3-phosphate oxidase (GPO). Lipase helps the breakdown of triacylglycerol to yield free fatty acids and glycerol, while glycerokinase catalyzes the adenosine-5-triphosphate-dependent phosphorylation of glycerol to yield alpha-glycerol phosphate, which can subsequently be oxidized by 3-glycerol phosphate oxidase to produce hydrogen peroxide. Response-surface methodology (RSM) was applied to optimize the proposed system for glycerol. Experiment settings were designed by central composite design to investigate the combined effects of pH, flow rate, reaction temperature, and ATP concentration on collected signals. The fitted model, per RSM, showed that the optimum conditions of the system are 2 mM ATP in 0.1 M carbonate buffer (pH 11.0), flow rate of 0.18 mL/min, temperature of 35 degrees C, 20 microL of sample injection, and applied voltage of 0.650 V. The proposed biosensing system using lipase, GK, and GPO exhibited a flow-injection analysis peak response of 2.5 min and a detection limit of 5 x 10(-5) M glycerol (S/N = 3) with acceptable reproducibility (CV < 4.30%). It also had linear working ranges from 10(-4) to 10(-2) M for glycerol and from 10(-3) to 10(-2) M for triacylglycerol. The capillary enzyme reactor was stable up to 2 months in continuous operation, and it was possible to analyze up to 15 samples per hour. The present biosensing system holds promise for on-line detection of triacylglycerol in serum and glycerol content in fermented products.  相似文献   

15.
The conversions of the isotope from [1-14C]acetate, [1-14C]glucose and [6-14C]glucose to CO2 and fatty acids in acini isolated from the mammary gland at the peak of lactation were studied. The incorporation of [9,10-3H]oleate into triacylglycerol synthesis as single substrate or in combination with substrates that potentially may supply trioses-phosphate was also determined. The rate of fatty acid synthesis paralleled the activity of the hexose monophosphate shunt and the data obtained reveal that little carbon from triose stage enters the phosphohexose pool via reversal of glycolytic pathway. The results are interpreted in terms of the NADPH producing systems and phosphoenolpyruvate carboxykinase activities as well as the possible implications in lipogenic and glyceroneogenic pathways.  相似文献   

16.
Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets.  相似文献   

17.
18.
We have studied the accretion of lipids in growing mice. We measured the rates of synthesis and degradation of triglycerides in epididymal fat pads of mice maintained for 44 days on a low-fat, high-carbohydrate diet (I) or a high-fat, low-carbohydrate diet (II). 2H2O was added to the drinking water for 14 days. Rates of incorporation/washout of 2H to/from C1 of triglyceride-glycerol showed that triglyceride synthesis was greater than triglyceride degradation (net triglyceride balance was approximately 2.5 times greater in II than in I). The data also show that the contribution of de novo lipogenesis to triglyceride-bound palmitate was approximately 3 times greater in I than in II. This was consistent with a greater relative intake of carbohydrate in I vs. II. The rates of incorporation and washout of newly synthesized (2H-labeled) palmitate into and from triglycerides were also measured. Those data suggested a remodeling of triglyceride-bound fatty acids. On measuring the profile of triglyceride-bound fatty acids, we observed a decrease in the relative abundance of triglyceride-bound palmitate and stearate and an increase in triglyceride-bound oleate and linoleate. This was observed in I and II. In summary, diet substantially affects the deposition and modeling of triglycerides in adipose tissue during growth. 2H2O can be used to examine the mechanisms responsible for the accumulation of triglycerides, e.g., factors that affect 1) triglyceride synthesis and degradation and 2) the source of fatty acids that are used in esterification.  相似文献   

19.
Peroxisome proliferator-activated receptor alpha (PPAR-α) belongs to the nuclear receptor superfamily of proteins. It is one of the principle regulators of metabolism and lipid homeostasis whose malfunction leads to complications including obesity and type 2 diabetes. In the adipose tissue, glyceroneogenesis is a unique pathway through which pyruvate is converted into glycerol-3- phosphate (G3P) in a multistep process. Previous findings demonstrated that glyceroneogenesis regulates triacylglycerol synthesis and adipogenesis. This led us to hypothesize that one of the pathway intermediate is physiologically relevant PPAR-α ligand. In the present study using in silico docking, we proved that glycerate, dihydroxy acetone phosphate, glyceraldehyde-3-phosphate, and G3P are key glyceroneogenesis pathway intermediates which bind to PPAR-α. They bind PPAR-α with comparable binding energy and docking score to that of (2s)-2-ethoxy-3-[4-(2-{4-[(methylsulfonyl)oxy]phenyl}ethoxy)phenyl]propanoic acid(AZ-2), a synthetic high affinity ligand of PPAR-α. These intermediates could be studied further as potential physiologically relevant activators of PPAR-α in vitro and in vivo.  相似文献   

20.
The paper deals with a regulatory effect of the redox state of nicotinamide coenzymes on glyceroneogenesis in the epididymal fatty tissues involving incorporation of [2-14C] pyruvate into synthetized de novo blood glucose, glycerol and fatty acids of triacyglycerines. Large values of the NAD+/NADH and NADP+/NADPH ratios in cytoplasm and mitochondria promote a high rate of lipogenesis and glucose oxidation processes, which is pronounced in a more intense 14C incorporation into fatty acids than in triacylglycerol glycerols. A decrease in the NAD+/NADH ratio and an increase in the reducing ability of NAD-pairs under fasting intensify glyceroneogenesis in the fatty tissue. The incorporation of [14C] pyruvate into blood glucose in 3.6 times as high, the radioactivity of fatty acids lowers. Nicotinamide administered to animals after fastening inhibits glyceroneogenesis in the fatty tissue, lowering considerably the incorporation of [14C] pyruvate into triacylglycerol glycerol and blood glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号