首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


2.
3.
Rat liver mitochondria treated extensively with n-pentane are incapable of oxidizing choline. Choline oxidation is more sensitive than is succinate oxidation to serial n-pentane extraction of mitochondria. The ability to oxidize choline is restored by the addition of ubiquinone-2 or ubiquinone-10 to the oxidase assay medium.  相似文献   

4.
The respiratory chain of the mitochondrial inner membrane includes a proton-pumping enzyme, complex I, which catalyses electron transfer from NADH to ubiquinone. This electron pathway occurs through a series of protein-bound prosthetic groups, FMN and around eight iron-sulfur clusters. The high number of polypeptide subunits of mitochondrial complex I, around 40, have a dual genetic origin. Neurospora crassa has been a useful genetic model to characterise complex I. The characterisation of mutants in specific proteins helped to understand the elaborate processes of the biogenesis, structure and function of the oligomeric enzyme. In the fungus, complex I seems to be dispensable for vegetative growth but required for sexual development. N. crassa mitochondria also contain three to four nonproton-pumping alternative NAD(P)H dehydrogenases. One of them is located in the outer face of the inner mitochondrial membrane, working as a calcium-dependent oxidase of cytosolic NADPH.  相似文献   

5.
Short chain ubiquinones (Q-3) uncouple oxidative phosphorylation in rat heart mitochondria, as shown by polarimetric experiments, and abolish P:O ratios in succinate driven oxidative phosphorylaton. The uncoupling is reversed by long chain ubiquinones (Q-7). Furthermore, short chain ubiquinones abolish oligomycin sensitivity of ATPase; the inhibition is restored by Q-7. The extraction of endogenous ubiquinone from mitochondria reversibly lowers oligomycin sensitivity of ATPase.  相似文献   

6.
Intact pigeon heart mitochondria showed 10-30% ubiquinone reduction in the absence of substrates. This reduction could not be ascribed to endogenous substrates, as judged by lack of effect of inhibitors and uncouplers and by the very low endogenous respiratory rate. Addition of NADH in the presence of antimycin caused further reduction of about 10% ubiquinone, apparently coupled to the rotenone- and antimycin-sensitive exo-NADH oxidase system [Rasmussen (1969) FEBS Lett. 2, 157-162]. Citric acid cycle substrates reduced most of the remaining ubiquinone in the presence of antimycin; 15-20% of the total ubiquinone content was still in the oxidized form under the most reducing conditions. Three pools of ubiquinone therefore appeared to be present in heart mitochondria: a metabolically inactive pool consisting of reduced as well as oxidized ubiquinone, a pool coupled to oxidation of added (cytoplasmic) NADH, and the well-known pool coupled to citric acid cycle oxidations. Ferricyanide selectively oxidized the ubiquinol reduced by added NADH, indicating that this pool is situated on the outer surface of the mitochondrial inner membrane. Ubiquinone reduction levels were determined with a new method, which is described in detail.  相似文献   

7.
Ubiquinone-binding proteins were isolated and purified from heavy beef heart mitochondria. 35% of the total ubiquinone in the mitochondria was associated with the purified proteins. About 83% of the associated ubiquinone could be released from the proteins by proteolytic treatment showing that at least 29% (0.87 nmol/mg) of the total ubiquinone (3.0 nmol ubiquinone/mg) in the mitochondria is in the bound form. The purified ubiquinone-binding proteins were resolved into 5 polypeptides with the molecular weights of 17.4, 12.9, 12.6, 9.8 and 8.6 kD on sodium dodecyl sulfate-gel electrophoresis.  相似文献   

8.
Studies have demonstrated that accumulation of mitochondrial tocopheroxyl radical, the primary oxidation product of alpha-tocopherol, accompanies rapid consumption of tocopherol. Enzyme-linked electron flow lowers both the steady-state concentration of the radical and the consumption of tocopherol. Reduction of tocopheroxyl radical by a mitochondrial electron carrier(s) seems a likely mechanism of tocopherol recycling. Succinate-ubiquinone reductase (complex II) was incorporated into liposomes in the presence of tocopherol and ubiquinone-10. After inducing formation of tocopheroxyl radical, it was possible to show that reduced ubiquinone prevents radical accumulation and tocopherol consumption. There was no evidence of direct reduction of tocopheroxyl radical by succinate-reduced complex II. These reactions were also measured using ubiquinone-1 and alpha-C-6-chromanol (2,5,7,8-tetramethyl-2-(4'-methylpentyl)-6-chromanol) which are less hydrophobic analogues of ubiquinone-10 and alpha-tocopherol. Mitochondrial membranes were made deficient in ubiquinone but sufficient in alpha-tocopherol and were reconstituted with added quinone. With these membranes it was shown that mitochondrial enzyme-linked reduction of ubiquinone protects alpha-tocopherol from consumption, and there is a requirement for ubiquinone. This complements the observations made in liposomes and we propose that reduced mitochondrial ubiquinones have a role in alpha-tocopherol protection, presumably through efficient reduction of the tocopheroxyl radical.  相似文献   

9.
10.
The effect of antimycin on (i) the respiratory activity of the KCN-insensitive pathway of mitochondria of Neurospora grown on chloramphenicol (chloramphenicol-grown) with durohydroquinone and succinate or NADH as substrate, (ii) the electron transfer from the b-type cytochromes to ubiquinone with durohydroquinone as electron donor as well as (iii) the electron transfer from the b-type cytochromes to duroquinone with succinate as electron donor in chloramphenicol-grown Neurospora and beef heart submitochondrial particles was studied. All experiments were performed in the uncoupled state. 1. The respiratory chain of chloramphenicol-grown Neurospora mitochondria branches at ubiquinone into two pathways. Besides the cytochrome oxidase-dependent pathway, a KCN-insensitive branch equiped with a salicylhydroxamate-sensitive oxidase exists. Durohydroquinone, succinate or NADH are oxidized via both pathways. The durohydroquinone oxidation via the KCN-insensitive pathway is inhibited by antimycin, wheras the succinate or NADH oxidation is not. The titer for ful inhibition is one mol antimycin per mol cytochrome b-563 or cytochrome b-557. 2. The electron transfer from durohydroquinone to ubiquinone, which takes place in the KCN-inhibited state, does not occur in the antimycin-inhibited state. 3. The reduction of duroquinone by succinate in the presence of KCN is inhibited by antimycin. The titer for full inhibition is one mol antimycin per mol cytochrome b-566 or cytochrome b-562 for beef heart (or cytochrome b-563 or cytochrome b-557 for Neurospora). 4. When electron transfer from the b-type cytochromes to cytochrome C1, ubiquinone and duroquinone is inhibited by antimycin, the hemes of cytochrome b-566 and cytochrome b-562 (or cytochrome b-563 and cytochrome b-557) are in the reduced state. 5. The experimental results suggest that the two b-type cytochromes form a binary complex the electron transferring activity of which is inhibited by antimycin, the titer for full inhibition being one mol of antimycin per mol of complex. The electron transfer from the b-type cytochromes to ubiquinone is inhibited in a non-linear fashion.  相似文献   

11.
12.
13.
1. The existence of an intermediate pool of ubiquinone in intact mitochondria of rat heart was investigated. 2. The incorporation of [3H-methyl]S-adenosylmethionine into ubiquinone-9 was not influenced by the co-synthesis of the intermediate, 3-nonaprenyl-4-hydroxybenzoate. 3. In the intermediate-depleted mitochondria, the synthetic rate of the intermediate, 3-nonaprenyl-4-hydroxybenzoate was similar to that of ubiquinone. 4. The possible existence of 3-nonaprenyl-4-hydroxybenzoate as a metabolic pool under physiological condition is discussed.  相似文献   

14.
15.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   

16.
17.
18.
In Saccharomyces cerevisiae, the trans-membrane helix of Qcr8p, the ubiquinone binding protein of complex III, contributes to the Q binding site. In wild-type cells, residue 62 of the helix is non-polar (proline). Substitution of proline 62 with a polar, uncharged residue does not impair the ability of the cells to respire, complex III assembly is unaffected, ubiquinone occupancy of the Q binding site is unchanged, and mitochondrial ubiquinone levels are in the wild-type range. Substitution with a +1 charged residue is associated with partial respiratory competence, impaired complex III assembly, and loss of cytochrome b. Although ubiquinone occupancy of the Q binding site is similar to wild-type, total mitochondrial ubiquinone doubled in these mutants. Mutants with a +2 charged substitution at position 62 are unable to respire. These results suggest that the accumulation of ubiquinone in the mitochondria may be a compensatory mechanism for impaired electron transport at cytochrome b.  相似文献   

19.
Extraction of endogenous ubiquinone with different methods does not influence ubiquinol oxidase activity in lyophilized mitochondria in terms ofK M, although a decrease ofV max is sometimes observed. Experiments with submitochondrial particles from a UQ-deficient mutant ofS. cerevisiae confirm the results with UQ-depleted mitochondria and support the idea that endogenous ubiquinone is not required for the oxidation of exogenous ubiquinols by complex III.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号