首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLRs directly induce innate host defense responses, but the mechanisms of TLR-mediated adaptive immunity remain subject to debate. In this study, we clarified a role of TLR-mediated innate immunity for induction of adaptive immunity by oral vaccination with a live recombinant attenuated Salmonella enteric serovar Typhimurium vaccine (RASV) strain expressing Streptococcus pneumoniae surface protein A (PspA) Ag. Of note, oral or intranasal vaccination with RASV expressing PspA resulted in identical or even significantly higher levels of PspA-specific IgG and IgA responses in the systemic and mucosal compartments of MyD88(-/-) mice of either BALB/c or C57BL/6 background when compared with those of wild-type mice. Although PspA-specific CD4(+) T cell proliferation in the MyD88(-/-) mice was minimal, depletion of CD4(+) T cells abolished PspA-specific IgG and IgA responses in the MyD88(-/-) mice of BALB/c background. Of the greatest interest, MyD88(-/-) mice that possessed high levels of PspA-specific IgG and IgA responses but minimal levels of CD4(+) T cell responses died earlier than nonvaccinated and vaccinated wild-type mice following i.v. or intranasal challenge with virulent S. pneumoniae. Taken together, these results suggest that innate immunity activated by MyD88 signals might not be necessary for Ag-specific Ab induction in both systemic and mucosal sites but is critical for protection following oral vaccination with attenuated Salmonella expressing PspA.  相似文献   

2.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

3.
Previously, we showed that nasal administration of a naked cDNA plasmid expressing Flt3 ligand (FL) cDNA (pFL) enhanced CD4(+) Th2-type, cytokine-mediated mucosal immunity and increased lymphoid-type dendritic cell (DC) numbers. In this study, we investigated whether targeting nasopharyngeal-associated lymphoreticular tissue (NALT) DCs by a different delivery mode of FL, i.e., an adenovirus (Ad) serotype 5 vector expressing FL (Ad-FL), would provide Ag-specific humoral and cell-mediated mucosal immunity. Nasal immunization of mice with OVA plus Ad-FL as mucosal adjuvant elicited high levels of OVA-specific Ab responses in external secretions and plasma as well as significant levels of OVA-specific CD4(+) T cell proliferative responses and OVA-induced IFN-gamma and IL-4 production in NALT, cervical lymph nodes, and spleen. We also observed higher levels of OVA-specific CTL responses in the spleen and cervical lymph nodes of mice given nasal OVA plus Ad-FL than in mice receiving OVA plus control Ad. Notably, the number of CD11b(+)CD11c(+) DCs expressing high levels of costimulatory molecules was preferentially increased. These DCs migrated from the NALT to mucosal effector lymphoid tissues. Taken together, these results suggest that the use of Ad-FL as a nasal adjuvant preferentially induces mature-type NALT CD11b(+)CD11c(+) DCs that migrate to effector sites for subsequent CD4(+) Th1- and Th2-type cytokine-mediated, Ag-specific Ab and CTL responses.  相似文献   

4.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

5.
The importance of IgA for protection at mucosal surfaces remains unclear, and in fact, it has been reported that IgA-deficient mice have fully functional vaccine-induced immunity against several bacterial and viral pathogens. The role of respiratory Ab in preventing colonization by Streptococcus pneumoniae has now been examined using polymeric IgR knockout (pIgR(-/-)) mice, which lack the ability to actively secrete IgA into the mucosal lumen. Intranasal vaccination with a protein conjugate vaccine elicited serotype-specific anti-capsular polysaccharide Ab locally and systemically, and pIgR(-/-) mice produced levels of total serum Ab after vaccination that were similar to wild-type mice. However, pIgR(-/-) mice had approximately 5-fold more systemic IgA and 6-fold less nasal IgA Ab than wild-type mice due to defective transport into mucosal tissues. Wild-type, but not pIgR(-/-) mice were protected against infection with serotype 14 S. pneumoniae, which causes mucosal colonization but does not induce systemic inflammatory responses in mice. The relative importance of secretory IgA in host defense was further shown by the finding that intranasally vaccinated IgA gene-deficient mice were not protected from colonization. Although secretory IgA was found to be important for protection against nasal carriage, it does not appear to have a crucial role in immunity to systemic pneumococcus infection, because both vaccinated wild-type and pIgR(-/-) mice were fully protected from lethal systemic infection by serotype 3 pneumococci. The results demonstrate the critical role of secretory IgA in protection against pneumococcal nasal colonization and suggest that directed targeting to mucosal tissues will be needed for effective vaccination in humans.  相似文献   

6.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

7.
Although sexually transmitted pathogens are capable of inducing pathogen-specific immune responses, vaginal administration of nonreplicating antigens elicits only weak, nondisseminating immune responses. The present study was undertaken to examine the potential of CpG-containing oligodeoxynucleotide (CpG ODN) for induction of chemokine responses in the genital tract mucosa and also as a vaginal adjuvant in combination with glycoprotein D of herpes simplex virus type 2 (HSV-2) for induction of antigen-specific immune responses. We found that a single intravaginal administration of CpG ODN in mice stimulates a rapid and potent response of CC chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES as well as of CXC chemokines MIP-2 and IP-10 in the vagina and/or the genital lymph nodes. Importantly, intravaginal vaccination with recombinant gD2 in combination with CpG ODN gave rise to a strong antigen-specific Th1-like immune response in the genital lymph nodes as well as the spleens of the vaccinated mice. Further, such an immunization scheme conferred both systemic and mucosal immunoglobulin G antibody responses as well as protection against an otherwise lethal vaginal challenge with HSV-2. These results illustrate the potential of CpG ODN for induction of potent chemokine responses in the genital tract and also as a vaginal adjuvant for generation of Th1-type mucosal and systemic immune responses towards a nonreplicating antigen derived from a sexually transmitted pathogen. These data have implications for the development of a mucosal vaccine against genital herpes and possibly other sexually transmitted diseases.  相似文献   

8.
The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic. Some studies have indicated the receptor-binding domain (RBD) protein of MERS-CoV spike (S) is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m.) with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum) alone, alum and polyriboinosinic acid (poly I:C) or alum and cysteine-phosphate-guanine (CpG) oligodeoxynucleotides (ODN). The immune responses of mice vaccinated with RBD, incomplete Freund’s adjuvant (IFA) and CpG ODN by a subcutaneous (s.c.) route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies) and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production). Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting effective humoral and cellular immune responses.  相似文献   

9.
The Trypanosoma cruzi trans-sialidase (TS) is a unique enzyme with neuraminidase and sialic acid transfer activities important for parasite infectivity. The T. cruzi genome contains a large family of TS homologous genes, and it has been suggested that TS homologues provide a mechanism of immune escape important for chronic infection. We have investigated whether the consensus TS enzymatic domain could induce immunity protective against acute and chronic, as well as mucosal and systemic, T. cruzi infection. We have shown that: 1) TS-specific immunity can protect against acute T. cruzi infection; 2) effective TS-specific immunity is maintained during chronic T. cruzi infection despite the expression of numerous related TS superfamily genes encoding altered peptide ligands that in theory could promote immune tolerization; and 3) the practical intranasal delivery of recombinant TS protein combined with a ssDNA oligodeoxynucleotide (ODN) adjuvant containing unmethylated CpG motifs can induce both mucosal and systemic protective immunity. We have further demonstrated that the intranasal delivery of soluble TS recombinant Ag combined with CpG ODN induces both TS-specific CD4(+) and CD8(+) T cells associated with vaccine-induced protective immunity. In addition, optimal protection induced by intranasal TS Ag combined with CpG ODN requires B cells, which, after treatment with CpG ODN, have the ability to induce TS-specific CD8(+) T cell cross-priming. Our results support the development of TS vaccines for human use, suggest surrogate markers for use in future human vaccine trials, and mechanistically identify B cells as important APC targets for vaccines designed to induce CD8(+) CTL responses.  相似文献   

10.

Background and Aims

Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner.

Methodology

Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses.

Results

CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation.

Conclusions

Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.  相似文献   

11.
Macrophages are less effective than DC at priming naive CD4(+) T cells, suggesting that DC are unique in initiating T cell-dependent Ab responses. We compared the ability of DC and macrophages, pulsed in vitro with Streptococcus pneumoniae, to elicit protein- and polysaccharide-specific Ig isotype production upon adoptive transfer into naive mice. S. pneumoniae-activated DC secreted more proinflammatory and anti-inflammatory cytokines, expressed higher levels of surface MHC class II and CD40, and presented S. pneumoniae or recombinant pneumococcal surface protein A (PspA) to a PspA-specific T hybridoma more efficiently than macrophages. However, upon adoptive transfer into naive mice, S. pneumoniae-pulsed macrophages elicited an IgM or IgG anti-PspA and anti-polysaccharide response comparable in serum titers and IgG isotype distribution to that induced by DC. The IgG anti-PspA response, in contrast to the IgG anti-polysaccharide, to S. pneumoniae-pulsed macrophages was T cell-dependent. S. pneumoniae-pulsed macrophages that were paraformaldehyde-fixed before transfer or lacking expression of MHC class II or CD40 were highly defective in eliciting an anti-PspA response, although the anti-polysaccharide response was largely unaffected. To our knowledge, these data are the first to indicate that macrophages can play an active role in the induction of a T cell-dependent humoral immune response in a naive host.  相似文献   

12.
Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs (CpG ODN) are potent adjuvants to protein antigens administered by parenteral or mucosal routes to BALB/c mice. To date, there have been no studies using combined parenteral/mucosal approaches with CpG DNA as adjuvant. In this study we evaluated different parenteral prime-mucosal boost and mucosal prime-parenteral boost strategies using hepatitis B surface antigen (HBsAg) alone or with different adjuvants: aluminum hydroxide (alum), cholera toxin (CT), CpG ODN. In addition, since CpG ODN has previously been shown to act synergistically with other adjuvants after parenteral or mucosal delivery, we also evaluated adjuvant combinations: alum+CpG ODN and CT+CpG ODN. The effects of adjuvant and administration strategy on systemic and mucosal humoral responses were measured, as well as cell-mediated immune responses (cytotoxic T lymphocyte activity). These results were compared to parenteral only or mucosal only strategies. Our findings demonstrate that parenteral immunization can prime for mucosal responses even when different lymph nodes were being targeted. HBsAg-specific immune responses (IgG in plasma, cytotoxic T lymphocytes) induced by parenteral prime could all be significantly enhanced by mucosal boosting and despite the fact that intramuscular immunization alone could not induce mucosal IgA, it could prime for a subsequent mucosal boost. In addition, the presence of adjuvant at time of boosting could influence the nature of subsequent immune responses (Th1 vs. Th2). Mice primed intranasally could have their systemic immune responses boosted with a parenteral administration and it was also possible to enhance mucosal responses induced by intranasal prime with an intramuscular boost.  相似文献   

13.
Oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotides within specific sequence contexts (CpG motifs) are detected, like bacterial or viral DNA, as a danger signal by the vertebrate immune system. CpG ODN synthesized with a nuclease-resistant phosphorothioate backbone have been shown to be potent Th1-directed adjuvants in mice, but these motifs have been relatively inactive on primate leukocytes in vitro. Moreover, in vitro assays that predict in vivo adjuvant activity for primates have not been reported. In the present study we tested a panel of CpG ODN for their in vitro and in vivo immune effects in mice and identified in vitro activation of B and NK cells as excellent predictors of in vivo adjuvant activity. Therefore, we tested >250 phosphorothioate ODN for their capacity to stimulate proliferation and CD86 expression of human B cells and to induce lytic activity and CD69 expression of human NK cells. These studies revealed that the sequence, number, and spacing of individual CpG motifs contribute to the immunostimulatory activity of a CpG phosphorothioate ODN. An ODN with a TpC dinucleotide at the 5' end followed by three 6 mer CpG motifs (5'-GTCGTT-3') separated by TpT dinucleotides consistently showed the highest activity for human, chimpanzee, and rhesus monkey leukocytes. Chimpanzees or monkeys vaccinated once against hepatitis B with this CpG ODN adjuvant developed 15 times higher anti-hepatitis B Ab titers than those receiving vaccine alone. In conclusion, we report an optimal human CpG motif for phosphorothioate ODN that is a candidate human vaccine adjuvant.  相似文献   

14.
Bacterial pneumonia is a leading cause of mortality in the United States. Innate immune responses, including type-1 cytokine production, are critical to the effective clearance of bacterial pathogens from the lung. Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotide motifs (CpG ODN), which mimic the effects of bacterial DNA, have been shown to enhance type-1 cytokine responses during infection due to intracellular pathogens, resulting in enhanced microbial clearance. The role of CpG ODN in modulating protective innate immunity against extracellular pathogens is unknown. Using a murine model of Gram-negative pneumonia, we found that CpG ODN administration stimulated protective immunity against Klebsiella pneumoniae. Specifically, intratracheal (i.t.) administration of CpG ODN (30 microg) 48 h before i.t. K. pneumoniae challenge resulted in increased survival, compared with animals pretreated with control ODN or saline. Pretreatment with CpG ODN resulted in enhanced bacterial clearance in lung and blood, and higher numbers of pulmonary neutrophils, NKT cells, gammadelta-T cells, and activated NK1.1+ cells and gammadelta-T lymphocytes during infection. Furthermore, pretreatment with CpG ODN enhanced the production of TNF-alpha, and type-1 cytokines, including IL-12, IFN-gamma, and the IFN-gamma-dependent ELR- CXC chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma in response to Klebsiella challenge, compared with control mice. These findings indicate that i.t. administration of CpG ODN can stimulate multiple components of innate immunity in the lung, and may form the basis for novel therapies directed at enhancing protective immune responses to severe bacterial infections of the lung.  相似文献   

15.
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems to both humans and livestock and of great economic impact worldwide. Oligodeoxynucleotides (ODN) which contain immunostimulatory CG motifs (CpG ODN) can promote Th1 responses, an adjuvant activity that is desirable for vaccination against intracellular pathogens. We investigated the feasibility of using CpG as an adjuvant combined with Toxoplasma lysate antigen (TLA) as a vaccine against toxoplasmosis. Genetically susceptible C57BL/6 mice were vaccinated with TLA with or without CpG ODN as an adjuvant and then challenged with 85 cysts of the moderately virulent RRA (Beverley) strain of T. gondii. Prior to challenge infection, immunization with TLA plus CpG ODN directed cellular and humoral immunity toward a Th1 pattern, characterized by enhanced INF gamma production by splenic cells in response to TLA, and enhanced production of toxoplasma-specific IgG and IgG (2a) antibodies. Consequently, CpG/TLA-treated mice showed prolonged survival and 64% reduction in brain parasite burden compared to non-CpG/TLA treated group. Our results suggest that CpG ODN would provide a stable and effective adjuvant for use in vaccination against toxoplasmosis.  相似文献   

16.
Human immunodeficiency virus (HIV) is a mucosally transmitted infection that rapidly targets and depletes CD4+ T cells in mucosal tissues and establishes a major reservoir for viral persistence in gut-associated lymphoid tissues. Therefore, vaccines designed to prevent HIV infections must induce potent and durable mucosal immune responses, especially in the genital tract. Here we investigated whether intranasal (i.n.) immunization with inactivated gp120-depleted HIV-1 antigen (Ag) plus CpG oligodeoxynucleotide (ODN) as an adjuvant induced local immune responses in the genital tract and cross-clade protection against intravaginal (IVAG) challenge. Lymphocytes isolated from the iliac lymph nodes (ILNs) and genital tracts of female mice i.n. immunized with HIV-1 Ag plus CpG showed significant HIV-specific proliferation and produced significantly higher levels of gamma interferon (IFN-gamma) and beta-chemokines than mice immunized with HIV-1 Ag alone or mixed with non-CpG ODN. CD8+ lymphocytes were dramatically increased in the genital tracts of mice immunized with HIV-1 Ag plus CpG, and protection following IVAG challenge with recombinant vaccinia viruses (rVVs) expressing HIV-1 gag was shown to be CD8 dependent. Finally, cross-clade protection was observed between clades A, C, and G but not B following IVAG challenge with rVVs expressing HIV-1 gag from different clades. These studies provide evidence that mucosal (i.n.) immunization induced strong local T-cell-mediated immune responses in the genital tract and cross-clade protection against IVAG challenge.  相似文献   

17.
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.  相似文献   

18.
In this study, we report the development of a novel, rationally designed immunostimulatory adjuvant based on chemical conjugation of CpG oligodeoxynucleotide (ODN) to the nontoxic B subunit of cholera toxin (CTB). We demonstrate that the immunostimulatory effects of CpG can be dramatically enhanced by conjugation to CTB. Thus, CpG ODN linked to CTB (CTB-CpG) was shown to be a more potent stimulator of proinflammatory cytokine and chemokine responses in murine splenocytes and human PBMCs than those of CpG ODN alone in vitro. The presence of CpG motif, but not modified phosphorothioate ODN backbone, was found to be critical for the enhanced immunostimulatory effects of CTB-CpG. Our mode-of-action studies, including studies on cells from specifically gene knockout mice suggest that similar to CpG, CTB-CpG exerts its immunostimulatory effects through a TLR9/MyD88- and NF-kappaB-dependent pathway. Surprisingly, and as opposed to CpG ODN, CTB-CpG-induced immunity was shown to be independent of endosomal acidification and resistant to inhibitory ODN. Furthermore, preincubation of CTB-CpG with GM1 ganglioside reduced the immunostimulatory effects of CTB-CpG to those of CpG ODN alone. Interestingly, conjugation of CpG ODN to CTB confers an enhanced cross-species activity to CpG ODN. Furthermore, using tetanus toxoid as a vaccine Ag for s.c. immunization, CTB-CpG markedly enhanced the Ag-specific IgG Ab response and altered the specific pattern of Ab isotypes toward a Th1 type response. To our knowledge, CTB is the first nontoxic derivative of microbial toxins discovered that when chemically linked to CpG remarkably augments the CpG-mediated immune responses.  相似文献   

19.
In this study, we examine whether native cholera toxin (nCT) as a mucosal adjuvant can support trinitrophenyl (TNP)-LPS-specific mucosal immune responses. C57BL/6 mice were given nasal TNP-LPS in the presence or absence of nCT. Five days later, significantly higher levels of TNP-specific mucosal IgA Ab responses were induced in the nasal washes, saliva, and plasma of mice given nCT plus TNP-LPS than in those given TNP-LPS alone. High numbers of TNP-specific IgA Ab-forming cells were also detected in mucosal tissues such as the nasal passages (NPs), the submandibular glands (SMGs), and nasopharyngeal-associated lymphoreticular tissue of mice given nCT. Flow cytometric analysis showed that higher numbers of surface IgA+, CD5+ B cells (B-1a B cells) in SMGs and NPs of mice given nasal TNP-LPS plus nCT than in those given TNP-LPS alone. Furthermore, increased levels of IL-5R alpha-chain were expressed by B-1a B cells in SMGs and NPs of mice given nasal TNP-LPS plus nCT. Thus, CD4+ T cells from these mucosal effector lymphoid tissues produce high levels of IL-5 at both protein and mRNA levels. When mice were treated with anti-IL-5 mAb, significant reductions in TNP-specific mucosal IgA Ab responses were noted in external secretions. These findings show that nasal nCT as an adjuvant enhances mucosal immune responses to a T cell-independent Ag due to the cross-talk between IL-5Ralpha+ B-1a B cells and IL-5-producing CD4+ T cells in the mucosal effector lymphoid tissues.  相似文献   

20.
Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号