首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent molecular studies addressing the phylogenetic relationships of avian orders have had conflicting results. While studies using nuclear DNA sequences tend to support traditional taxonomic views, also supported by morphological data [(paleognaths (galloanseres (all other birds)))], with songbirds forming a clade within Neoaves (all other birds), analyses with complete mtDNA genomes have resulted in topologies that place songbirds as one of the earliest-diverging avian lineages. Considering that over half of the extant bird species are songbirds, these different results have very different implications for our understanding of avian evolution. We analyzed data sets comprising nearly 4 kb of mitochondrial DNA (mtDNA) (complete 12S, ND1, ND2, and cytochrome b) plus 600 bp of the nuclear gene c-mos for 15 birds that were chosen to represent all major avian clades and to minimize potential long-branch attraction problems; we used a partition-specific maximum likelihood approach. Our results show congruence with respect to the ingroup among phylogenies obtained with mtDNA and the nuclear gene c-mos, separately or combined. The data sets support a traditional avian taxonomy, with paleognaths (ratites and tinamous) occupying a basal position and with songbirds more derived and forming a monophyletic group. We also show that, for mtDNA studies, turtles may be a better outgroup for birds than crocodilians because of their slower rate of sequence evolution.  相似文献   

2.
Birds in a bush: five genes indicate explosive evolution of avian orders   总被引:1,自引:0,他引:1  
All recent studies of bird phylogeny have produced poorly resolved relationships among the orders of Neoaves, the lineage that includes most modern birds. This "bush" result suggests the possibility of an explosive and potentially unresolvable evolutionary radiation. However, simultaneous radiations of multiple lineages are thought to be rare or nonexistent in nature and difficult to corroborate empirically because lack of phylogenetic resolution can also be caused by analytical artifacts. Here we examine the predictions of the explosive radiation hypothesis for five independent genetic datasets for Neoaves. We propose a methodology for testing for polytomies of evolutionary lineages, perform likelihood-ratio tests to compare trees with zero-length branches to more resolved trees, compare topologies between independent gene trees, and propose a power test for the SOWH test. The evidence of (1) extremely short (in some cases zero-length) branches for interordinal relationships across independent gene trees and (2) topological incongruence among gene trees suggests that the bird tree includes essentially simultaneous radiation of multiple lineages. This result explains why a robust phylogeny of birds has not been produced despite much effort on the part of avian systematists.  相似文献   

3.
Good phylogenetic trees are required to test hypotheses about evolutionary processes. We report four new avian mitochondrial genomes, which together with an improved method of phylogenetic analysis for vertebrate mt genomes give results for three questions in avian evolution. The new mt genomes are: magpie goose (Anseranas semipalmata), an owl (morepork, Ninox novaeseelandiae); a basal passerine (rifleman, or New Zealand wren, Acanthisitta chloris); and a parrot (kakapo or owl-parrot, Strigops habroptilus). The magpie goose provides an important new calibration point for avian evolution because the well-studied Presbyornis fossils are on the lineage to ducks and geese, after the separation of the magpie goose. We find, as with other animal mitochondrial genomes, that RY-coding is helpful in adjusting for biases between pyrimidines and between purines. When RY-coding is used at third positions of the codon, the root occurs between paleognath and neognath birds (as expected from morphological and nuclear data). In addition, passerines form a relatively old group in Neoaves, and many modern avian lineages diverged during the Cretaceous. Although many aspects of the avian tree are stable, additional taxon sampling is required.  相似文献   

4.
Chojnowski JL  Kimball RT  Braun EL 《Gene》2008,410(1):89-96
Neoaves is the most diverse major avian clade, containing ~95% of avian species, and it underwent an ancient but rapid diversification that has made resolution of relationships at the base of the clade difficult. In fact, Neoaves has been suggested to be a "hard" polytomy that cannot be resolved with any amount of data. However, this conclusion was based on slowly evolving coding sequences and ribosomal RNAs and some recent studies using more rapidly evolving intron sequences have suggested some resolution at the base of Neoaves. To further examine the utility of introns and exons for phylogenetics, we sequenced parts of two unlinked clathrin heavy chain genes (CLTC and CLTCL1). Comparisons of phylogenetic trees based upon individual partitions (i.e. introns and exons), the combined dataset, and published phylogenies using Robinson-Foulds distances (a metric of topological differences) revealed more similarity than expected by chance, suggesting there is structure at the base of Neoaves. We found that introns provided more informative sites, were subject to less homoplasy, and provided better support for well-accepted clades, suggesting that intron evolution is better suited to determining closely-spaced branching events like the base of Neoaves. Furthermore, phylogenetic power analyses indicated that existing molecular datasets for birds are unlikely to provide sufficient phylogenetic information to resolve relationships at the base of Neoaves, especially when comprised of exon or other slowly evolving regions. Although relationships among the orders in Neoaves cannot be definitively established using available data, the base of Neoaves does not appear to represent a hard polytomy. Our analyses suggest that large intron datasets have the best potential to resolve relationships among avian orders and indicate that the utility of intron data for other phylogenetic questions should be examined.  相似文献   

5.
6.
通常认为古腭型鸟类处在现生鸟类系统进化树的基部,最近的分子水平研究则认为今腭型鸟类中雀形目种类构成了现生鸟类中一个最古老的支系.本研究通过对现生鸟类中21目39种核c-mos基因和线粒体12S rRNA基因部分序列的分析,从分子角度对现生鸟类的早期进化及三趾鹑鸟类的系统发生进行了探讨.研究结果表明,鸡雁类是现生鸟类最古老的一个支系,现生鸟类的祖先并不是经白垩纪到第三纪大灭绝后残留下来的一些过渡性水鸟(transitional shorebirds).在现生鸟类中,今腭型鸟类为并系发生,古腭型鸟类为单系发生.三趾鹑类在系统发生中晚于鸡雁类和古腭型鸟类,早于今腭型鸟类中非鸡雁类鸟类与鹤形目鸟类的亲缘关系较远.建议将现生鸟类分为初鸟下纲和新鸟下纲2个下纲,三趾鹑类属新鸟下纲的三趾鹑目(Turniciformes).  相似文献   

7.
Incomplete taxon sampling has been a major problem in resolving the early divergences in birds. Five new mitochondrial genomes are reported here (brush-turkey, lyrebird, suboscine flycatcher, turkey vulture, and a gull) and three break up long branches that tended to attract the distant reptilian outgroup. These long branches were to galliforms, and to oscine and suboscine passeriformes. Breaking these long branches leaves the root, as inferred by maximum likelihood and Bayesian phylogenetic analyses, between paleognaths and neognaths. This means that morphological, nuclear, and mitochondrial data are now in agreement on the position of the root of the avian tree and we can, move on to other questions. An overview is then given of the deepest divisions in the mitogenomic tree inferred from complete mitochondrial genomes. The strict monophyly of both the galloanseres and the passerines is strongly supported, leaving the deep six-way split within Neoaves as the next major question for which resolution is still lacking. Incomplete taxon sampling was also a problem for Neoaves, and although some resolution is now available there are still problems because current phylogenetic methods still fail to account for real features of DNA sequence evolution.  相似文献   

8.

Background  

Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade.  相似文献   

9.
Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.  相似文献   

10.
To test the hypothesis put forward by Feduccia of the origin of modern birds from transitional birds, we sequenced the first two complete mitochondrial genomes of shorebirds (ruddy turnstone and blackish oystercatcher) and compared their sequences with those of already published avian genomes. When corrected for rate heterogeneity across sites and non-homogeneous nucleotide compositions among lineages in maximum likelihood (ML), the optimal tree places palaeognath birds as sister to the neognaths including shorebirds. This optimal topology is a re-rooting of recently published ordinal-level avian trees derived from mitochondrial sequences. Using a penalized likelihood (PL) rate-smoothing process in conjunction with dates estimated from fossils, we show that the basal splits in the bird tree are much older than the Cretaceous-Tertiary (K-T) boundary, reinforcing previous molecular studies that rejected the derivation of modern birds from transitional shorebirds. Our mean estimate for the origin of modern birds at about 123 million years ago (Myr ago) is quite close to recent estimates using both nuclear and mitochondrial genes, and supports theories of continental break-up as a driving force in avian diversification. Not only did many modern orders of birds originate well before the K-T boundary, but the radiation of major clades occurred over an extended period of at least 40 Myr ago, thus also falsifying Feduccia's rapid radiation scenario following a K-T bottleneck.  相似文献   

11.
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another 11 species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.  相似文献   

12.
Evolution of mitochondrial gene orders in echinoderms   总被引:1,自引:0,他引:1  
A comprehensive analysis of the mitochondrial gene orders of all previously published and two novel Antedon mediterranea (Crinoidea) and Ophiura albida (Ophiuroidea) complete echinoderm mitochondrial genomes shows that all major types of rearrangement operations are necessary to explain the evolution of mitochondrial genomes. In addition to protein coding genes we include all tRNA genes as well as the control region in our analysis. Surprisingly, 7 of the 16 genomes published in the GenBank database contain misannotations, mostly unannotated tRNAs and/or mistakes in the orientation of tRNAs, which we have corrected here. Although the gene orders of mt genomes appear very different, only 8 events are necessary to explain the evolutionary history of echinoderms with the exception of the ophiuroids. Only two of these rearrangements are inversions, while we identify three tandem-duplication-random-loss events and three transpositions.  相似文献   

13.
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.  相似文献   

14.
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  相似文献   

15.
Members of subclass Copepoda are abundant, diverse, and—as a result of their variety of ecological roles in marine and freshwater environments—important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831 base pairs) of Amphiascoides atopus and 10,649 base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.  相似文献   

16.
啮总目包括啮虫目(皮虱和书虱)和虱目(羽虱和吸虱),是农业和医学等领域具有重要经济意义和研究价值的类群,目前已鉴定和描述的物种超过10 000个。啮总目昆虫线粒体基因组的变异性在昆虫各类群中最为剧烈,这些变异包括基因组的结构、基因排序、基因含量和链上分布等诸多方面。本文全面分析和总结了啮总目昆虫裂化线粒体基因组的进化属性,并结合两侧对称动物线粒体基因组的裂化特征重构了线粒体基因组环裂化的过程。引入“线粒体基因组核型”的概念来描述动物线粒体基因组丰富的变异程度。动物线粒体的染色体有减小的趋势,而线粒体基因组的裂化正是体现这种趋势的一种重要策略。同时,总结和探讨了目前具有争议的啮总目主要类群间的系统发育关系。本综述为啮总目昆虫线粒体基因组学、啮总目系统发生关系以及两侧对称动物线粒体基因组进化模式的研究提供一个新的视角。  相似文献   

17.
Knowledge of avian phylogeny is prerequisite to understanding the circumstances and timing of the diversification of birds and the evolution of morphological, behavioral, and life-history traits. Recent molecular datasets have helped to elucidate the three most basal clades in the tree of living birds, but relationships among neoavian orders (the vast majority of birds) remain frustratingly vexing. Here, we examine intron 7 of the beta-fibrinogen gene in the most taxonomically inclusive survey of DNA sequences of nonpasserine bird families and orders to date. These data suggest that Neoaves consist of two sister clades with ecological parallelisms comparable to those found between marsupial and placental mammals. Some members of the putative respective clades have long been recognized as examples of convergent evolution, but it was not appreciated that they might be parts of diverse parallel radiations. In contrast, some traditional orders of birds are suggested by these data to be polyphyletic, with representative families in both radiations.  相似文献   

18.
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.  相似文献   

19.
Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under-studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non-avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad-scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.  相似文献   

20.
In this study, we analyse the evolutionary dynamics and phylogenetic implications of gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and four published mt genomes of isopod crustaceans. The sequence coverage is nearly complete for four of the five newly sequenced species, with only the control region and some tRNA genes missing, while in Janira maculosa only two thirds of the genome could be determined. Mitochondrial gene order in isopods seems to be more plastic than that in other crustacean lineages, making all nine known mt gene orders different. Especially the asellote Janira is characterized by many autapomorphies. The following inferred ancestral isopod mt gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control region, trnS1, cob, trnT, nad5, trnF. We consider the inferred gene translocation events leading to gene rearrangements as valuable characters in phylogenetic analyses. In this first study covering major isopod lineages, potential apomorphies were identified, e.g., a shared relative position of trnR in Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene order, namely a shared relative position of trnV in unrelated isopod lineages. In addition to increased taxon sampling secondary structure, modification in tRNAs and GC-skew inversion may be potentially fruitful subjects for future mt genome studies in a phylogenetic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号