首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of the present investigation was to describe the basic cell biology of the postfertilization activation of rRNA genes using in vitro-produced bovine embryos as a model. We used immunofluorescence confocal laser scanning microscopy and transmission electron microscopy to study nucleolar development in the nuclei of embryos up to the fifth postfertilization cell cycle. During the first cell cycle (1-cell stage), fibrillarin, upstream binding factor (UBF), nucleolin (C23), and RNA polymerase I were localized to distinct foci in the pronuclei, and, ultrastructurally, compact spherical fibrillar masses were the most prominent pronuclear finding. During the second cell cycle (2-cell stage), the findings were similar except for a lack of nucleolin and RNA polymerase I labeling. During the third cell cycle (4-cell stage), fibrillarin, UBF, nucleophosmin, and nucleolin were localized to distinct foci. Ultrastructurally, spherical fibrillar masses that developed a central vacuole over the course of the cell cycle were observed. Early in the fourth cell cycle (8-cell stage), fibrillarin, nucleophosmin, and nucleolin were localized to small bodies that with time developed a central vacuole. UBF and topoisomerase I were localized to clusters of small foci. Ultrastructurally, spherical fibrillar masses with a large eccentric vacuole and later small peripheral vacuoles were seen. Late in the fourth cell cycle, nucleophosmin and nucleolin were localized to large shell-like bodies; and fibrillarin, UBF, topoisomerase I, and RNA polymerase I were localized to clusters of small foci. Ultrastructurally, a presumptive dense fibrillar component (DFC) and fibrillar centers (FCs) were observed peripherally in the vacuolated spherical fibrillar masses. Subsequently, the presumptive granular component (GC) gradually became embedded in the substance of this entity, resulting in the formation of a fibrillo-granular nucleolus. During the fifth cell cycle (16-cell stage), a spherical fibrillo-granular nucleolus developed from the start of the cell cycle. In conclusion, the nucleolar protein compartment in in vitro-produced preimplantation bovine embryos is assembled over several cell cycles. In particular, RNA polymerase I and topoisomerase I are detected for the first time late during the fourth embryonic cell cycle, which coincides with the first recognition of the DFC, FCs, and GC at the ultrastructural level.  相似文献   

2.
The intracellular distribution of nucleolar phosphoproteins B23 and nucleolin was studied during mouse spermatogenesis, a process that is characterized by a progressive reduction of nucleolar activity. Biochemical analyses of isolated germ cell fractions were performed in parallel with the in situ ultrastructural immunolocalization of these two proteins by means of specific antibodies and colloidal gold markers, and by silver staining. RNA blot experiments showed that mRNA for nucleolin progressively decreased during spermatogenesis whereas mRNA for B23 increased in amount during early spermatogenic stages. Immunoblotting confirmed that both proteins were present during early spermatogenesis up to the round spermatid stage and absent from mature sperm. Immunoelectron microscopy revealed that in spermatogonia, leptotene and pachtyene spermatocytes, and in Golgi phase spermatids, B23 and nucleolin were localized in the dense fibrillar component and granular component of the nucleolus but not in the fibrillar centers. In the dense fibrillar residue of the cap phase spermatids, labeling with anti-nucleolin but not with anti-B23 was observed. During nucleolar inactivation, neither of the two polypeptides was dispersed to the nucleoplasm. Silver salts stained the fibrillar centers and dense fibrillar component but not the granular component of the nucleolus. Our results suggest that there is no direct relationship between nucleolar activity and the occurrence of B23 and nucleolin or silver staining. Moreover, we confirm that silver staining and the presence of B23 or nucleolin are not directly related to each other.by M. Trendelenburg  相似文献   

3.
4.
5.
The intranucleolar distribution of phosphoproteins B23 and C23 was visualized simultaneously by post-embedding immunoelectron microscopy in HeLa cell nucleoli, using specific antibodies. The data show that proteins B23 and C23 co-localize to the same nucleolar compartments, i.e., the dense fibrillar component and the granular component. Neither of the two antibodies is significantly associated with the fibrillar centers in these cells, although the fibrillar centers appear positive after silver staining. These findings suggest that other unidentified components must be responsible for the silver staining observed in the fibrillar centers of interphase nucleoli. The results are discussed in the light of previously reported data obtained by preembedding immunolabeling techniques and by silver staining, which both suggested a localization of protein C23 inside the fibrillar centers.  相似文献   

6.
7.
Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II–III oocytes and within the nucleoli of relatively quiescent stage VI oocytes of Xenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II–III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II–III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4′,6-diamidino-2-phenylindole showed condensed DNA within nucleolar FCs of both stage II–III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble. Received: 18 March 1996 / Accepted: 16 April 1996  相似文献   

8.
Ag staining was applied on interphasic nucleoli of Zea mays root cells 120h after germination. We applied the two-step Ag-NOR staining technique to small root fragments and the one-step technique to sections of Lowicryl-embedded tissue. The small-sized silver grains were mainly located in the dense fibrillar component (DFC). The unstained fibrillar centers (FCs) differed in their proteinic contents from the NOR (which is positively silver stained) and were not the interphasic NOR counterpart.  相似文献   

9.
10.
11.
12.
Several procedures for the silver staining of nucleoli have been evaluated at the electron microscopic level to determine optimal conditions for ultrastructural preservation and staining specificity. The present study shows that a brief fixation with 1% buffered formaldehyde followed by methanol: acetic acid (3 : 1) fixation yielded optimal preservation and silver staining of nucleoli. Using this procedure for electron microscopic studies of interphase nucleoli, it was found that the punctate silver grains observed by light microscopy were composed of fine silver granules, of approx. 100 Å diameter, organized in discrete clusters. In similar studies on adriamycin-induced segregated nucleoli, it was observed that the silver staining reaction was mainly limited to the fibrillar portion of the nucleolus. Accordingly, nucleolar proteins C23 and B23, found earlier to be the major silver binding proteins of the nucleolus, are mainly concentrated in the fibrillar nucleolar component.  相似文献   

13.
14.
Argyrophilic nuclear proteins, known to be functionally associated with ribosomal genes, were localized, in four-, eight-, and 16-cell bovine embryo blastomere nuclei using two different silver-staining procedures. Within the eight-cell cleavage stage by the process of embryonal nucleologenesis in the cow embryo the full-capacity ribosome-producing machinery is established. In the four-cell embryo, many patches and islands of argyrophilic (Ag+) material were detected in the nucleoplasm. The nucleolus-precursor bodies (NPBs), composed uniformly of a homogeneous compact mass, were completely devoid of any silver staining. On the other hand, clear-cut localization of argyrophilic proteins was detected during the eight-cell stage either inside the transforming NPBs or in the close vicinity, or in the already differentiated nucleolus. In compact, nonvacuolated NPB, an intensive Ag+ area was detected, in the form of a lenticle, at the periphery of the NPB. During and following vacuolation of the NPB, no Ag+ was detected inside these vacuoles. It was seen, however, in the dense fibrillar nucleolar component surrounding the smaller vacuoles formed at the time of the establishment of nucleolar structure. Ag+ areas were seen repeatedly in the vicinity of NPBs, probably a part of the nucleolus-associated chromatin or, alternatively, representing the extranucleolar bodies. In blastomere nuclei of 16-cell embryos, already possessing reticulated nucleoli known from intensively synthesizing somatic cells, the silver-staining pattern corresponded to the usual situation in differentiated cells: slight staining of fibrillar centers, heavy labelling in the dense fibrillar component, and absence of silver deposits in the granular component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.  相似文献   

16.
17.
The nucleoli of developing mouse spermatids were examined with ethanol-phosphotungstic acid (E-PTA) staining, and also with bismuth staining following formaldehyde fixation (FA-Bi staining) and glutaraldehyde fixation (GA-Bi staining). Only the cortical zone of the nucleolar dense fibrillar component (DFC) in the round spermatids was stained with E-PTA, while the inner area remained either faintly (early Golgi-phase spermatids) or completely unstained (cap-phase spermatids). Incubation of the fixed testis with dithiothreitol before E-PTA staining resulted in homogeneously intense staining of the DFC. The facts suggest that numerous E-PTA-positive basic proteins were present in the DFC, but disulfide crosslinks formed in the DFC proteins prevent penetration of PTA into the DFC interior. The DFC was stained with bismuth after FA-Bi and GA-Bi staining until the disappearance of the nucleoli occurring in acrosome-phase spermatids. The fibrillar center, homogeneously stained using E-PTA, FA-Bi, and GA-Bi methods was present in the nucleoli of Golgi-phase and early cap-phase spermatids, but disappeared in the nucleoli of late cap-phase spermatids. These results are discussed based on the previous studies dealing with the ribosomal RNA synthesis in mouse spermiogenesis.  相似文献   

18.
Nucleolar organizer region (NOR)-silver staining of the chromosomes and nucleoli is a method that enables the detection of proteins associated with the ribosomal genes. We adapted the most commonly used cytochemical NOR-silver staining techniques to Western-blotted proteins of HeLa cells, mimicking the silver staining of cells in situ, and testing several parameters that may influence the in situ reaction. Two of these techniques, both one-step methods with colloidal developers, were standardized to obtain reproducible results. The specificity of NOR staining is documented by: (a) only a few bands are revealed among the many proteins detected by total proteins staining on gels or blots; two major groups of bands are found around 100 KD and 40 KD that could correspond at least in part to nucleolin and B23 nucleolar proteins; (b) the silver staining of bands was not the result of the high relative protein concentrations; and (c) the same number of NOR-silver-stained bands was observed across a large range of protein concentrations. The reaction appeared to be specific for a subset of nucleolar proteins, because the same bands were observed with the use of nucleolar, nuclear, or total cell protein extracts, and the silver grains observed in electron microscopy were clearly confined to the nucleolar fibrillar centers and dense fibrillar component. The efficiency of the reaction was not modified by any of the tested fixative pre-treatments except that involving methanol. The presented standardization of NOR-silver staining on Western blots allows the characterization of the Ag-NOR proteins and their specific regions responsible for silver staining of the nucleolus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号