首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.  相似文献   

3.
4.
Summary Highly purified centromeric heterochromatin was isolated from mouse liver nuclei and the pattern of core histone variants was analyzed. In comparison with total chromatin, the centromeric heterochromatin of young animals was characterized by (1) enrichment in the replication-dependent variants H2A1, H2B2 and H32, (2) reduced amount of the minor variant H2Az and (3) absence of ubiquitinated molecules of H2A. This specific variant pattern changed upon ageing as a result of accumulation of replacement variants so that in adult animals both chromatin preparations exhibited similar pattern for H2A and H2B, while the difference in the profile of H3 variants was preserved.  相似文献   

5.
Centromeres are epigenetically defined chromatin domains marked by the presence of the histone H3 variant CENP-A. Here we review recent structural and biochemical work on CENP-A, and advances in understanding the mechanisms that propagate and read centromeric chromatin domains.  相似文献   

6.
The CENP-A–specific chaperone HJURP mediates CENP-A deposition at centromeres. The N-terminal region of HJURP is responsible for binding to soluble CENP-A. However, it is unclear whether other regions of HJURP have additional functions for centromere formation and maintenance. In this study, we generated chicken DT40 knockout cell lines and gene replacement constructs for HJURP to assess the additional functions of HJURP in vivo. Our analysis revealed that the middle region of HJURP associates with the Mis18 complex protein M18BP1/KNL2 and that the HJURP-M18BP1 association is required for HJURP function. In addition, on the basis of the analysis of artificial centromeres induced by ectopic HJURP localization, we demonstrate that HJURP exhibits a centromere expansion activity that is separable from its CENP-A–binding activity. We also observed centromere expansion surrounding natural centromeres after HJURP overexpression. We propose that this centromere expansion activity reflects the functional properties of HJURP, which uses this activity to contribute to the plastic establishment of a centromeric chromatin structure.  相似文献   

7.
Propagation of centromeric chromatin requires exit from mitosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Centromeres direct chromosomal inheritance by nucleating assembly of the kinetochore, a large multiprotein complex required for microtubule attachment during mitosis. Centromere identity in humans is epigenetically determined, with no DNA sequence either necessary or sufficient. A prime candidate for the epigenetic mark is assembly into centromeric chromatin of centromere protein A (CENP-A), a histone H3 variant found only at functional centromeres. A new covalent fluorescent pulse-chase labeling approach using SNAP tagging has now been developed and is used to demonstrate that CENP-A bound to a mature centromere is quantitatively and equally partitioned to sister centromeres generated during S phase, thereby remaining stably associated through multiple cell divisions. Loading of nascent CENP-A on the megabase domains of replicated centromere DNA is shown to require passage through mitosis but not microtubule attachment. Very surprisingly, assembly and stabilization of new CENP-A-containing nucleosomes is restricted exclusively to the subsequent G1 phase, demonstrating direct coupling between progression through mitosis and assembly/maturation of the next generation of centromeres.  相似文献   

8.
We studied the organization of mouse satellite 3 and 4 (MS3 and MS4) in comparison with major (MaSat) and minor (MiSat) DNA sequences, located in the centromeric and pericentromeric regions of mouse telocentric chromosomes by fiber-FISH. The centromeric region consists of a small block of MiSat and MS3 followed by a pericentromeric block of MaSat with MS4. Inside the block of the long-range cluster, MaSat repeats intermingle mostly with MS4, while MiSat intermingle with MS3. The distribution of GC-rich satellite DNA fragments is less strict than that of AT-rich fragments; it is possible to find MS3 fragments in the MaSat array and MS4 fragments in the MiSat array. The methylation pattern does not fully correspond to one of the four families of satellite DNA (satDNA). In each satDNA fragment only part of the DNA is methylated. MS3 and MS4 are heavily methylated being GC-rich. Pericentomeric satellite DNA fragments are more methylated than centromeric ones. Among the four families of satDNA MS4 is the most methylated while MiSat is methylated only to a minimal extent. Estimation of the average fragment length and average distance between fragments shows that the range of the probes used does not cover the whole centromeric region. The existence of unknown sequences in the mouse centromere is likely.  相似文献   

9.
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.  相似文献   

10.
Semi-conservative segregation of nucleosomes to sister chromatids during DNA replication creates gaps that must be filled by new nucleosome assembly. We analyzed the cell-cycle timing of centromeric chromatin assembly in Drosophila, which contains the H3 variant CID (CENP-A in humans), as well as CENP-C and CAL1, which are required for CID localization. Pulse-chase experiments show that CID and CENP-C levels decrease by 50% at each cell division, as predicted for semi-conservative segregation and inheritance, whereas CAL1 displays higher turnover. Quench-chase-pulse experiments demonstrate that there is a significant lag between replication and replenishment of centromeric chromatin. Surprisingly, new CID is recruited to centromeres in metaphase, by a mechanism that does not require an intact mitotic spindle, but does require proteasome activity. Interestingly, new CAL1 is recruited to centromeres before CID in prophase. Furthermore, CAL1, but not CENP-C, is found in complex with pre-nucleosomal CID. Finally, CENP-C displays yet a different pattern of incorporation, during both interphase and mitosis. The unusual timing of CID recruitment and unique dynamics of CAL1 identify a distinct centromere assembly pathway in Drosophila and suggest that CAL1 is a key regulator of centromere propagation.  相似文献   

11.
At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

12.
13.
14.
15.
Centromeres are chromosomal structures required for equal DNA segregation to daughter cells, comprising specialized nucleosomes containing centromere protein A (CENP-A) histone, which provide the basis for centromeric chromatin assembly. Discovery of centromere protein components is progressing, but knowledge related to their establishment and maintenance remains limited. Previously, using anti-CENP-A native chromatin immunoprecipitation, we isolated the interphase–centromere complex (ICEN). Among ICEN components, subunits of the remodeling and spacing factor (RSF) complex, Rsf-1 and SNF2h proteins, were found. This paper describes the relationship of the RSF complex to centromere structure and function, demonstrating its requirement for maintenance of CENP-A at the centromeric core chromatin in HeLa cells. The RSF complex interacted with CENP-A chromatin in mid-G1. Rsf-1 depletion induced loss of centromeric CENP-A, and purified RSF complex reconstituted and spaced CENP-A nucleosomes in vitro. From these data, we propose the RSF complex as a new factor actively supporting the assembly of CENP-A chromatin.  相似文献   

16.
The epithelial barrier is fundamental to the physiology of most metazoan organ systems. Occluding junctions, including vertebrate tight junctions and invertebrate septate junctions, contribute to the epithelial barrier function by restricting free diffusion of solutes through the paracellular route. The recent identification and characterization of claudins, which are tight junction-associated adhesion molecules, gives insight into the molecular architecture of tight junctions and their barrier-forming mechanism in vertebrates. Mice lacking the expression of various claudins, and human hereditary diseases with claudin mutations, have revealed that the claudin-based barrier function of tight junctions is indispensable in vivo. Interestingly, claudin-like molecules have recently been identified in septate junctions of Drosophila. Here, we present an overview of recent progress in claudin studies conducted in mammals and flies.  相似文献   

17.
Chromatin in the nuclei fixed in tissue and in the nuclei isolated by low ionic strength solutions in the presence of Mg2+ is represented by globular (nucleomeric) fibrils, 20-25 nm in diameter. The staphylococcal or endogenous nuclear nuclease splits the chromatin fibrils resulting in fragments corresponding to nucleomers and their multimers. Upon removal of firmly bound Mg2+ the nucleomers unfold to form chains consisting of 4-6-8 nucleosomes. Mild hydrolysis of nuclear chromatin by staphylococcal nuclease results in a split-off of mono-, di- and trimers of nucleomers sedimenting in a sucrose density gradient in the presence of EDTA as particles with the sedimentation coefficients of 37, 47 and 55S, respectively. The sedimentation coefficient for the mononucleomer in a sucrose density gradient with MgCl2 is 45S. Determination of the length of DNA fragments of chromatin split-off by staphylococcal nuclease showed that the nucleomer consists of 8 nucleosomes, while the dimer and trimer of the nucleomer consists of 14-16 and 21-24 nucleosomes, respectively. The nucleomeric monomer undergoes structural transition from the compact (45S) to the "loose" state (37S) after removal of Mg2+. This transition is completely reversible, when the nucleomer contains histone H1. The removal of the latter or dialysis of the nucleomer against EDTA in low ionic strength solutions results in a complete unfolding of the nucleomer into a nucleosomal chain fragment. A model for the nucleomer fibril structure in which the helical organization of the nucleosomal chain in the nucleomer (2 turns with 4 nucleosomes in each) is alternated with the impaired helical bonds between the nucleomers is discussed. The functional significance of the nucleomeric organization of chromatin may be an additional restriction of the site-specific recognition of DNA in chromatin with the possibility of local (at the level of one nucleomer) changes in chromatin conformation excluding this restriction.  相似文献   

18.
A systematic study of the effect of different ionic conditions on the morphology of the 25–30 nm chromatin fiber from chicken erythrocytes has revealed that, as the ionic strength is increased, knobby fibers with a clear superbead structure are formed in the presence of either Mg++ or Na+, or both. A further increase in ionic strength results in smooth chromatin fibers due to a tight packing of superbeads. Cross-linking such fibers with formaldehyde and reversal of the ionic conditions, demonstrates the superbead structures underlying the smooth fibers observed at high ionic concentrations. The average size of the superbeads is 34 nm along the length of the fibers, in agreement with the value found in embedded sea cucumber chromatin. A second class of superbeads has an average length of 25 nm and probably corresponds to partially disrupted structures.  相似文献   

19.
A solid foundation: functional specialization of centromeric chromatin   总被引:17,自引:0,他引:17  
Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号