首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GTP-binding proteins have been implicated as transducers of a variety of biological signaling processes. These proteins share considerable structural as well as functional homology. Due to these similarities, it was thought that a monoclonal antibody that inhibits the light activation of the rod outer segment GTP-binding protein, tranducin (Gt), might exert some functional effect upon the G proteins that regulate the adenylate cyclase system. Antibody 4A, raised against the alpha subunit of Gt, cross-reacted (by hybridization on nitrocellulose) with purified alpha subunits of other G proteins (Gi and Gs, regulatory guanyl nucleotide-binding proteins that mediate inhibition and stimulation of adenylate cyclase, respectively) as long as they were not denatured. This antibody, which interferes with rod outer segment cGMP phosphodiesterase activation by blocking interaction between rhodopsin and Gt, also interfered with actions of both the stimulatory and inhibitory G proteins of adenylate cyclase from rat cerebral cortex membranes. Effects of monoclonal antibody (mAb) 4A were dose-dependent and not reversed by washing. mAb 4A also blocked the Gi-mediated inhibition of adenylate cyclase in the cyc- variant of S49 lymphoma and in doing so raised the level of adenylate cyclase activity in both the cyc- variant and the S49 wild type. There was no effect of mAb 4A on adenylate cyclase activity of the resolved catalytic subunit. These results suggest that the well known sequence homologies among the G proteins involved in cellular signal transduction may extend to the sites that interact with other members of signal-transducing cascades (receptors and effector molecules). Therefore, antibody 4A may serve as a useful tool to probe the similarities and differences among the various systems.  相似文献   

2.
Bovine retinas incubated with [3H]myristic acid incorporated detectable radiolabel into only a few proteins. The most heavily labeled was the alpha subunit of the rod outer segment G protein transducin (Gt alpha). The radiolabeled protein was specifically eluted from illuminated membranes in the presence of GTP, displaying the unique solubility properties of Gt alpha. It comigrated with Gt alpha in electrophoresis and chromatography and was immunoprecipitated by Gt alpha-specific antibodies. The radiolabel was confirmed by hydrolysis, chemical derivatization, and chromatography to be amide-linked myristic acid. The solubility of the myristoylated Gt alpha indicates that myristoylation is not sufficient to cause tight membrane association of this normally membrane-bound subunit. Incorporation of [3H]myristate was blocked by the protein synthesis inhibitor cycloheximide, suggesting that that fatty acid group is introduced during or soon after translation in the rod inner segment.  相似文献   

3.
The epitope of monoclonal antibody (mAb 4A), which recognizes the alpha subunit of the rod G protein, Gt, has been suggested to be both at the carboxyl terminus (Deretic, D., and Hamm, H.E. (1987) J. Biol. Chem. 262, 10839-10847) and the amino terminus (Navon, S.E., and Fung, B.K.-K. (1988) J. Biol. Chem. 263, 489-496) of the molecule. To characterize further the mAb 4A binding site on alpha t and to resolve the discrepancy between these results limited proteolytic digestion of Gt or alpha t using four proteases with different substrate specificities has been performed. Endoproteinase Arg-C, which cleaves the peptide bond at the carboxylic side of arginine residues, cleaved the majority of alpha t into two fragments of 34 and 5 kDa. The alpha t 34-kDa fragment in the holoprotein, but not alpha t-guanosine 5'-O-(3-thiotriphosphate), was converted further to a 23-kDa fragment. A small fraction of alpha t-GDP was cleaved into 23- and 15-kDa fragments. Endoproteinase Lys-C, which selectively cleaves at lysine residues, progressively removed 17 and then 8 residues from the amino terminus, forming 38- and 36-kDa fragments. Staphylococcus aureus V8 protease is known to remove 21 amino acid residues from the amino-terminal region of alpha t, with the formation of a 38-kDa fragment. L-1-Tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin cleaved alpha t progressively into fragments of known amino acid sequences (38, then 32 and 5, then 21 and 12 kDa) and a transient 34 kDa fragment. The binding of mAb 4A to proteolytic fragments was analyzed by Western blot and immunoprecipitation. The major fragments recognized by mAb 4A on Western blots were the 34- and 23-kDa fragments obtained by endoproteinase Arg-C and tryptic digestion. Under conditions that allowed sequencing of the 15- and 5-kDa fragments neither the 34- nor the 23-kDa fragments could be sequenced by Edman degradation, indicating that they contained a blocked amino terminus. The smallest fragment that retained mAb 4A binding was the 23-kDa fragment containing Met1 to Arg204. Thus the main portion of the mAb 4A antigenic site was located within this fragment, indicating that the carboxyl-terminal residues from Lys205 to Phe350 were not required for recognition by the antibody. Additionally, the antibody did not bind the 38- and 36-kDa or other fragments containing the carboxyl terminus, showing that the amino-terminal residues from Met1 to Lys17 were essential for antibody binding to alpha t.  相似文献   

4.
The effect of GDP on rod outer segment G-protein interactions   总被引:1,自引:0,他引:1  
The role of GDP has heretofore been little studied in the analysis of visual receptor G-protein (G) interactions. Here we use kinetically resolved absorption and light scattering spectroscopy, centrifugation, porous membrane filtration, and enzyme assay to compare the effectiveness of GDP with that of GTP or gamma-thio-guanosine-5'-triphosphate in the modulation of G-protein binding to rod disc membranes and activated receptor (R*). We also compare effectiveness of GDP with that of GTP in the separation of G alpha and G beta gamma subunits and in activation of effector, cGMP phosphodiesterase. We find that when different nucleotide affinities are taken into account, actions such as the release of G from R* binding, earlier ascribed to GTP alone, are also typical of GDP. The principal specific actions of GTP that occur only weakly or undetectably for GDP are, respectively, the release of G-protein subunits from the membrane into solution and activation of phosphodiesterase. While GDP, like GTP, releases G-protein binding to receptor, we argue that GDP cannot mediate G-protein subunit separation, even on the membrane surface. GDP retained on G-protein after GTP hydrolysis may function to prevent tight binding to quiescent receptors in a manner analogous to its action on G-protein binding to activated receptors. Weak binding of G.GDP may function to accelerate receptor catalyzed amplification during transduction.  相似文献   

5.
A monoclonal antibody that blocks the light-activated cyclic GMP (cGMP) pathway in frog photoreceptor outer segments (ROS) has been obtained. The antibody (4A) inhibits guanine nucleotide binding to G-protein, the intermediate that links rhodopsin excitation to cGMP phosphodiesterase (PDE), inhibiting light-induced PDE activity as a consequence. Antibody inhibition of the light-activated cGMP pathway is complete at a stoichiometry of approximately one antibody per G-protein in the mixture, which indicates high specificity of the inhibition. Inhibition is more pronounced than that caused by PDE inhibitors such as isobutylmethylxanthine (IBMX) or Ro 20-1724. Antibody 4A has the further effect of inhibiting the phosphorylation of two low molecular weight proteins, components I and II, whose phosphorylation normally can be stimulated by raising cGMP levels. The inhibition is not overridden by adding cGMP, which suggests that the G-protein influences these phosphorylations by a pathway distinct from its action on cGMP concentration. Antibody 4A may prove useful as a probe of the relevance of the cGMP pathway to visual transduction in living photoreceptors. Six other monoclonal antibodies to G-protein, as well as six monoclonal antibodies to rhodopsin and one to PDE, do not block light-activated guanine nucleotide binding, PDE activity, or ROS protein phosphorylations.  相似文献   

6.
Specificity of G protein beta and gamma subunit interactions.   总被引:3,自引:0,他引:3  
Multiple heterotrimeric guanine nucleotide binding protein (G protein) subunits have evolved to couple a large variety of receptors to intracellular effectors. G protein beta gamma subunits are essential for efficient coupling of alpha subunits to receptors, and they are also important for modulation of effectors. Several different beta and gamma subunits exist, but it is not known whether all possible combinations of beta and gamma can form functional dimers. To answer this question, we have compared the ability of in vitro translated beta 1, beta 2, and beta 3 to form dimers with either gamma 1 or gamma 2. Dimerization was monitored by gel filtration, resistance to tryptic digestion, and chemical cross-linking. The results indicate that beta 1 binds both gamma subunits, beta 2 binds only gamma 2, and beta 3 will bind neither gamma 1 or gamma 2. Hence, the occurrence of beta gamma dimers may be partially regulated by the ability of the subunits to associate. Specificity of dimerization might allow cells to co-express multiple beta and gamma subunits while maintaining efficient and specific signal transduction.  相似文献   

7.
Rod outer segments (ROS) exhibit high acyltransferase (AT) activity, the preferred substrate of which being lysophosphatidylcholine. To study factors possibly regulating ROS AT activity purified ROS membranes were assayed under conditions under which protein kinase C (PKC), cAMP-dependent protein kinase (PKA), and phosphatases were stimulated or inhibited. PKC activation produced a significant increase in the acylation of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) with oleate, it inhibited phosphatidylcholine (PC) acylation, and phosphatidylserine (PS) and phosphatidic acid (PA) acylation remained unchanged. ROS PKA activation resulted in increased oleate incorporation into PS and PI while the acylation of PC, PE, and PA remained unchanged. Inhibition of ROS PKC or PKA produced, as a general trait, inverse effects with respect to those observed under kinase-stimulatory conditions. ROS phosphatase 2A was inhibited by using okadaic acid, and the changes observed in AT activity are described. These findings suggest that changes in ROS protein phosphorylation produce specific changes in AT activity depending on the phospholipid substrate. The effect of light on AT activity in ROS membranes was also studied and it is reported that acylation in these membranes remains unchanged independent of the illumination condition used.  相似文献   

8.
9.
Oxidation of methionine (Met) residues is one of the most common protein degradation pathways. Two Met residues, Met256 and Met432, of a recombinant fully human monoclonal IgG1 antibody have been shown to be susceptible to oxidation. Met256 and Met432 are located in the antibody CH2-CH3 interface and in close proximity to protein A and protein G binding sites. The effect of oxidation of these susceptible Met residues on the binding to protein A and protein G was investigated in the current study. Incubation of the antibody with 5% tert-butyl hydroperoxide (tBHP) resulted in a nearly complete oxidation of Met256 and Met432, while incubation with 1% tBHP resulted in mixed populations of the antibody with different degrees of Met oxidation. Oxidation of Met256 and Met432 resulted in earlier elution of the antibody from protein A and protein G columns when eluted with a gradient of decreasing pH. Analysis by ELISA and surface plasmon resonance (SPR) revealed decreased binding affinity of the oxidized antibody to protein A and protein G. It is therefore concluded that oxidation of the Met256 and Met432 residues of the recombinant monoclonal antibody altered its interaction with protein A and protein G resulting in a decrease in binding affinity.  相似文献   

10.
11.
12.
We have applied multicolor BiFC to study the association preferences of G protein beta and gamma subunits in living cells. Cells co-express multiple isoforms of beta and gamma subunits, most of which can form complexes. Although many betagamma complexes exhibit similar properties when assayed in reconstituted systems, knockout experiments in vivo suggest that individual isoforms have unique functions. BiFC makes it possible to correlate betagamma complex formation with functionality in intact cells by comparing the amounts of fluorescent betagamma complexes with their abilities to modulate effector proteins. The relative predominance of specific betagamma complexes in vivo is not known. To address this issue, multicolor BiFC can determine the association preferences of beta and gamma subunits by simultaneously visualizing the two fluorescent complexes formed when beta or gamma subunits fused to amino terminal fragments of yellow fluorescent protein (YFP-N) and cyan fluorescent protein (CFP-N) compete to interact with limiting amounts of a common gamma or beta subunit, respectively, fused to a carboxyl terminal fragment of CFP (CFP-C). Multicolor BiFC also makes it possible to determine the roles of interacting proteins in the subcellular targeting of complexes, study the formation of protein complexes that are unstable under isolation conditions, determine the roles of co-expressed proteins in regulating the association preferences of interacting proteins, and visualize dynamic events affecting multiple protein complexes. These approaches can be applied to studying the assembly and functions of a wide variety of protein complexes in the context of a living cell.  相似文献   

13.
In the visual process, one photoexcited rhodopsin (R*) catalyzes the activation of hundreds of G-proteins. It remains to be determined whether G-protein and R* find one another by membrane surface diffusion of these components (diffusion model) or by diffusion of G-protein through the aqueous phase (hopping model). A monolayer of each main rod outer segment (ROS) phospholipid interacting with a subphase containing G-protein, has been used to simulate the interaction of G-protein with the cytoplasmic surface of discal membranes. The possible diffusion of G-protein through the aqueous phase was then measured by observing its adsorption-desorption in the monolayer of each main ROS phospholipid. From examination of surface pressure and ellipsometric isotherms at the nitrogen-water interface, we have determined that once incorporated into the monolayer, the G-protein remains associated, independent of surface pressure, thus providing evidence against the hopping model.  相似文献   

14.
Monoclonal antibodies to proteins important in phototransduction in the frog rod outer segment have been obtained. These include 6 different antibodies to rhodopsin, 50 to a guanine nucleotide binding protein (G-protein; 40,000 daltons), and 2 to cytoplasmic proteins. The antigens used were Percoll-purified rod outer segments, a rod outer segment soluble protein fraction, or a soluble plus peripheral membrane protein fraction. Antibodies were assayed by solid phase assay using a fluorogenic detection system. Proteins to which antibodies bound were assayed on Western blots, and the sensitivities of three different detection systems were compared. Most antibodies bound to only one rod outer segment protein band on Western blots. Immunofluorescence microscopy demonstrated binding of both anti-rhodopsin and anti-G-protein to isolated frog rod outer segments. Antibodies were purified from either culture supernatants or ascites fluid on protein A affinity columns. Two purified anti-G-protein antibodies have binding affinities to 125I-labeled G-protein of less than 10(-6) M-1. Of 11 antibodies to frog or bovine G-protein tested in solid phase and Western blot assays, all bind to the alpha rather than the beta or gamma subunits. Procedures developed here are being used in preparing other antibodies that affect reactions in the phototransduction pathway.  相似文献   

15.
Rhodopsin in the rod outer segment plasma membrane   总被引:8,自引:8,他引:0       下载免费PDF全文
Isolated frog retinas were incubated in vitro with a 4-h pulse of [3H]leucine, then chased for 32 h with a nonradioactive amino acid mixture. At the end of the incubation, light and electron microscope autoradiograms were prepared from some of the retinas. The autoradiograms revealed: (a) intense radioactivity in the basal disks of the rod outer segments, (b) diffuse label evenly distributed throughout the rod outer segments, and (c) a high concentration of label in the entire rod outer segment plasma membrane. Incubation under identical conditions, but with puromycin added, significantly inhibited the labeling of all of these components. To identify the labeled proteins, purified outer segments from the remaining retinas were analyzed biochemically by SDS disc gel electrophoresis and gel filtration chromatography. SDS gel electrophoresis showed that about 90% of the total rod outer segment radioactivity chromatographed coincident with visual pigment, suggesting that the radiolabeled protein in the plasma membrane is visual pigment. Gel filtration chromatography demonstrated that the radiolabeled protein co-chromatographed with rhodopsin rather than opsin, and that the newly synthesized visual pigment is both the basal disks and the plasma membrane is present in the native configuration.  相似文献   

16.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.  相似文献   

17.
Freely-diffusing phospholipid spin labels have been employed to study rhodopsin-lipid interactions in frog rod outer segment disc membranes. Examination of the ESR spectra leads us to the conclusion that there are two motionally distinguishable populations of lipid existing in frog rod outer segment membranes over a wide physiological temperature range. Each of the spin probes used shows a two-component electron spin resonance (ESR) spectrum, one component of which is motionally restricted on the ESR timescale, and represents between 33 and 40% of the total integrated spectral intensity. The second spectral component which accounts for the remainder of the spectral intensity possesses a lineshape characteristic of anisotropic motion in a lipid bilayer, very similar in shape to that observed from the same spin labels in dispersions of whole extracted frog rod outer segment lipid. The motionally restricted spectral component is attributed to those spin labels in contact with the surface of rhodospin, while the major component is believed to originate from spin labels in the fluid lipid bilayer region of the membranes. Calculations indicate that the motionally restricted lipid is sufficient to cover the protein surface. This population of lipids is shown here and elsewhere (Watts, A., Volotovski, I.D. and Marsh, D. (1979) Biochemistry 18, 5006-5013) to be by no means rigidly immobilized, having motion in the 20 ns time regime as opposed to motions in the one nanosecond time regime found in the fluid bilayer. Little selectivity for the motionally restricted population is observed between the different spin-labelled phospholipid classes nor with a spin-labelled fatty acid or sterol.  相似文献   

18.
Photoreceptor diameter and spacing have been extensively analyzed with respect to diffraction, waveguiding and other phenomena and have been found to be consistent with optimal design criteria. Photoreceptor length, on the other hand, has received but little attention. It is proposed here that the outer segment length of rods is optimal with respect to the competing demands of maximal photon absorption and minimal noise. This is borne out by our calculations based on the experimental data.  相似文献   

19.
The rod outer segment disk membrane of bovine retina has been isolated in a predominantly fused state. The physical and chemical properties of the membrane in the fused state are profoundly different from the corresponding properties of the same membrane in the unfused state. Exposure to light induces the transition of the disk membrane from the fused to the unfused state. Evidence is presented which suggests that the fusion-defusion cycle of the disk membrane is a primary event of photoexcitation and nerve stimulation.  相似文献   

20.
The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5'-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号