共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation. 相似文献
2.
During development, neuronal processes extend, branch and navigate to ultimately synapse with target tissue. We have shown a regulatory role for ARNO and ARF6 in dendritic branching and axonal elongation and branching during neuritogenesis, particularly with respect to cytoskeletal dynamics. Here, we have examined the role of ARF6 and the ARF GEF ARNO in endosomal dynamics during neurite elongation in hippocampal neurons. Axonal and dendritic endosomes were labeled by expression of the endosomal marker, endotubin. Expression of endotubin-green fluorescent protein resulted in targeting to tubular-vesicular structures throughout the somatodendritic and axonal domains. These endosomal structures did not colocalize with conventional early or late endosomal markers or with the synaptic vesicle marker, SV2. However, they did label with internalized lectin, indicating that they are endosomal structures. Expression of catalytically inactive ARNO (ARNO-E156K) or inactive ARF6 (ARF6-T27N) caused a redistribution of endotubin to the cell surface of the axons and dendrites. In contrast, expression of these constructs had no effect upon the distribution of SV2-positive structures. Furthermore, expression of inactive ARF1 (ARF1-T31N) did not change endotubin distribution. These results suggest that endotubin labels a distinct endosomal structure in neurons and that ARNO and ARF6 mediate neurite extension through the regulation of this compartment. 相似文献
3.
Vidal-Quadras M Gelabert-Baldrich M Soriano-Castell D Lladó A Rentero C Calvo M Pol A Enrich C Tebar F 《Traffic (Copenhagen, Denmark)》2011,12(12):1879-1896
The main cellular Ca(2+) sensor, calmodulin (CaM), interacts with and regulates several small GTPases, including Rac1. The present study revealed high binding affinity of Rac1 for CaM and uncovered two new essential binding domains in Rac1: the polybasic region, important for phosphatidylinositol-4-phosphate 5-kinase (PIP5K) interaction, and the adjacent prenyl group. CaM inhibition increased Rac1 binding to PIP5K and induced an extensive phosphatidylinositol 4,5-bisphosphate (PI4,5P(2) )-positive tubular membrane network. Immunofluorescence demonstrated that the tubules were plasma membrane invaginations resulting from an ADP-ribosylation factor 6 (ARF6)-dependent and clathrin-independent pathway. The role of Rac1 in this endocytic route was analyzed by expressing constitutively active and inactive mutants. While active Rac1 impaired tubulation, the inactive mutant enhanced it. Intriguingly, inactive mutant expression elicited tubulation by recruiting PIP5K and inhibiting Rac1 at the plasma membrane. Accordingly, CaM inhibition inactivated Rac1 and increased Rac1/PIP5K interaction. Therefore, our findings highlight an important new role for Rac1 and CaM in controlling clathrin-independent endocytosis. 相似文献
4.
Ming Yang Andrew D. James Rakesh Suman Richard Kasprowicz Michaela Nelson Peter J. O'Toole William J. Brackenbury 《Journal of cellular physiology》2020,235(4):3950-3972
Ion channels can regulate the plasma membrane potential (Vm) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment. 相似文献
5.
Epithelial cell scattering encompasses the dissolution of intercellular junctions, cell-cell dissociation, cell spreading, and motility. The Rac1 and ARF6 GTPases have been shown to regulate one or more of these aforementioned processes. In fact, activated Rac1 has been shown to promote cell-cell adhesion as well as to enhance cell motility, leading to conflicting reports on the effect of Rac1 activation on epithelial cell motility. In this study, we have examined the activation profiles of endogenous Rac1 and ARF6 during the sequential stages of epithelial cell scattering. Using Madin-Darby canine kidney cells treated with hepatocyte growth factor/scatter factor or cell lines stably expressing activated v-Src, we show that Rac1 and ARF6 exhibit distinct activation profiles during cell scattering. We have found that an initial ARF6-dependent decrease in the levels of Rac1-GTP is necessary to induce cell-cell dissociation. This is followed by a steady increase in Rac1 and ARF6 activation and cell migration. In sum, this study documents the progression of ARF6 and Rac1 activities during epithelial cell scattering. 相似文献
6.
Bourguignon LY Gilad E Peyrollier K Brightman A Swanson RA 《Journal of neurochemistry》2007,101(4):1002-1017
Both hyaluronan [HA, the major glycosaminoglycans in the extracellular matrix (ECM)] and CD44 (a primary HA receptor) are associated with astrocyte activation and tissue repair following central nervous system (CNS) injury. In this study we investigated the question of whether HA-CD44 interaction influences astrocyte signaling and migration. Our data indicated that HA binding to the cultured astrocytes stimulated Rac1 signaling and cytoskeleton-mediated migration. To determine the cellular and molecular basis of these events, we focused on PKN gamma, a Rac1-activated serine/threonine kinase in astrocytes. We determined that HA binding to astrocytes stimulated Rac1-dependent PKN gamma kinase activity which, in turn, up-regulated the phosphorylation of the cytoskeletal protein, cortactin, and attenuated the ability of cortactin to cross-link F-actin. Further analyses indicated that the N-terminal antiparallel coiled-coil (ACC) domains of PKN gamma interacted with Rac1, and transfection of astrocytes with PKN gamma-ACCcDNA inhibited PKN gamma activity. Over-expression of the PKN gamma-ACC domain also functions as a dominant-negative mutant to block HA/CD44-mediated PKN gamma activation of cortactin and astrocyte migration. Taken together, these findings strongly suggest that hyaluronan/CD44 interaction with Rac1-PKN gamma plays a pivotal role in cytoskeleton activation and astrocyte migration. These newly discovered HA/CD44-induced astrocyte function may provide important insight into novel therapeutic treatments for tissue repair following CNS injury. 相似文献
7.
Xianliang Huang Yang Shen Yi Zhang Lin Wei Yi Lai Jiang Wu Xiaojing Liu Xiaoheng Liu 《Cell Adhesion & Migration》2013,7(6):472-478
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. 相似文献
8.
Hai-Sheng?Li Kuntala?Shome Raúl?Rojas Mark?A?Rizzo Chandrasekaran?Vasudevan Eric?Fluharty Lorraine?C?Santy James?E?Casanova Guillermo?Romero
Background
Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. 相似文献9.
Tubules are the building blocks of epithelial organs and form in response to cues derived from morphogens such as hepatocyte growth factor (HGF). Relatively little is known about signaling pathways that orchestrate the cellular behaviors that constitute tubule development. Here, using three-dimensional cell cultures of Madin-Darby canine kidney cells, we show that the ARF6 GTPase is a critical determinant of tubule initiation in response to HGF. ARF6 is transiently activated during tubulogenesis and perturbing the ARF6 GTP/GDP cycle by inducible expression of ARF6 mutants defective in GTP binding or hydrolysis, inhibits the development of mature tubules. Further, we show that activation of ARF6 is necessary and sufficient to initiate tubule extension. The effect of ARF6 on tubule initiation is two-fold. First, ARF6 regulates the subcellular distribution of the GTPase, Rac1, to tubule extensions. Second, ARF6-induced ERK activation regulates Rac1 activation during tubule initiation through the expression of the receptor for urokinase type plasminogen activator. Thus, we have identified a cellular apparatus downstream of ARF6 activation, which regulates membrane and cytoskeleton remodeling necessary for the early stages of tubule development. 相似文献
10.
ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase alpha 下载免费PDF全文
In the developing nervous system, controlled neurite extension and branching are critical for the establishment of connections between neurons and their targets. Although much is known about the regulation of axonal development, many of the molecular events that regulate axonal extension remain unknown. ADP-ribosylation factor nucleotide-binding site opener (ARNO) and ADP-ribosylation factor (ARF)6 have important roles in the regulation of the cytoskeleton as well as membrane trafficking. To investigate the role of these molecules in axonogenesis, we expressed ARNO and ARF6 in cultured rat hippocampal neurons. Expression of catalytically inactive ARNO or dominant negative ARF6 resulted in enhanced axonal extension and branching and this effect was abrogated by coexpression of constitutively active ARF6. We sought to identify the downstream effectors of ARF6 during neurite extension by coexpressing phosphatidyl-inositol-4-phosphate 5-Kinase alpha [PI(4)P 5-Kinase alpha] with catalytically inactive ARNO and dominant negative ARF6. We found that PI(4)P 5-Kinase alpha plays a role in neurite extension and branching downstream of ARF6. Also, expression of inactive ARNO/ARF6 depleted the actin binding protein mammalian ena (Mena) from the growth cone leading edge, indicating that these effects on axonogenesis may be mediated by changes in cytoskeletal dynamics. These results suggest that ARNO and ARF6, through PI(4)P 5-Kinase alpha, regulate axonal elongation and branching during neuronal development. 相似文献
11.
12.
Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKCalpha in RBL-2H3 cells 下载免费PDF全文
Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha. 相似文献
13.
Dise RS Frey MR Whitehead RH Polk DB 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(1):G276-G285
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR. 相似文献
14.
Zuo Y Shields SK Chakraborty C 《Biochemical and biophysical research communications》2006,351(2):361-367
Rac GTPases are known to play a crucial role in regulating cytoskeletal changes necessary for cell migration. Migration has been shown to be positively regulated by Rac in most cell types. However, there is also a large body of conflicting evidence in some other cell types with respect to the role of Rac in migration, suggesting that Rac GTPases regulate cell migration in a cell type-dependent manner. In the present study, we have characterized the effects of Rac1 GTPase inhibition on the migratory abilities of a number of breast cancer cell lines with differential degrees of tumorigenic and metastatic potentials. We show that Rac1 inhibition in non-metastatic (MCF-7, T-47D) or moderately metastatic (Hs578T) cell lines results in inhibition of migration, whereas in highly metastatic cell lines (MDA-MB-435, MDA-MB-231, and C3L5) Rac1 inhibition results in stimulation of migration. This stimulation of migration following Rac1 inhibition is also accompanied by the enhanced RhoA activity, suggesting a possible existence of a dominating role of RhoA over Rac1 in regulating intrinsic migration of the highly metastatic breast cancer cells. 相似文献
15.
Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration 总被引:22,自引:0,他引:22
Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat domain (ARD) of ankyrin is responsible for Tiam1 binding. Biochemical studies and deletion mutation analyses indicate that the 11-amino acid sequence between amino acids 717 and 727 of Tiam1 ((717)GEGTDAVKRS(727)L) is the ankyrin-binding domain. Most importantly, ankyrin binding to Tiam1 activates GDP/GTP exchange on Rho GTPases (e.g., Rac1).Using an Escherichia coli-derived calmodulin-binding peptide (CBP)-tagged recombinant Tiam1 (amino acids 393-728) fragment that contains the ankyrin-binding domain, we have detected a specific binding interaction between the Tiam1 (amino acids 393-738) fragment and ankyrin in vitro. This Tiam1 fragment also acts as a potent competitive inhibitor for Tiam1 binding to ankyrin. Transfection of SP-1 cell with Tiam1 cDNAs stimulates all of the following: (1) Tiam1-ankyrin association in the membrane projection; (2) Rac1 activation; and (3) breast tumor cell invasion and migration. Cotransfection of SP1 cells with green fluorescent protein (GFP)-tagged Tiam1 fragment cDNA and Tiam1 cDNA effectively blocks Tiam1-ankyrin colocalization in the cell membrane, and inhibits GDP/GTP exchange on Rac1 by ankyrin-associated Tiam1 and tumor-specific phenotypes. These findings suggest that ankyrin-Tiam1 interaction plays a pivotal role in regulating Rac1 signaling and cytoskeleton function required for oncogenic signaling and metastatic breast tumor cell progression. 相似文献
16.
17.
Oberoi TK Dogan T Hocking JC Scholz RP Mooz J Anderson CL Karreman C Meyer zu Heringdorf D Schmidt G Ruonala M Namikawa K Harms GS Carpy A Macek B Köster RW Rajalingam K 《The EMBO journal》2012,31(1):14-28
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis. 相似文献
18.
Huang M Satchell L Duhadaway JB Prendergast GC Laury-Kleintop LD 《Journal of cellular biochemistry》2011,112(6):1572-1584
The small GTPase RhoB regulates endocytic trafficking of receptor tyrosine kinases (RTKs) and the non-receptor kinases Src and Akt. While receptor-mediated endocytosis is critical for signaling processes driving cell migration, mechanisms that coordinate endocytosis with the propagation of migratory signals remain relatively poorly understood. In this study, we show that RhoB is essential for activation and trafficking of the key migratory effectors Cdc42 and Rac in mediating the ability of platelet-derived growth factor (PDGF) to stimulate cell movement. Stimulation of the PDGF receptor-β on primary vascular smooth muscle cells (VSMCs) results in RhoB-dependent trafficking of endosome-bound Cdc42 from the perinuclear region to the cell periphery, where the RhoGEF Vav2 and Rac are also recruited to drive formation of circular dorsal and peripheral ruffles necessary for cell migration. Our findings identify a novel RhoB-dependent endosomal trafficking pathway that integrates RTK endocytosis with Cdc42/Rac localization and cell movement. 相似文献
19.
Natarajan V. Vepa S. Shamlal R. Al-Hassani M. Ramasarma T. Ravishankar H.N. Scribner W.M. 《Molecular and cellular biochemistry》1998,183(1-2):113-124
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [32P] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [32P] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC and , the major isotypes of PKC in BPAECs, by TPA ( 100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [32P] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation. 相似文献
20.
Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway 总被引:1,自引:0,他引:1
Lai Y Shen Y Liu XH Zhang Y Zeng Y Liu YF 《International journal of biological sciences》2011,7(6):782-791
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis. 相似文献