首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP.  相似文献   

2.
The binding of a series of alkyl aryl sulfides to chloroperoxidase (CPO) and horseradish peroxidase (HRP) has been investigated by optical difference spectroscopy, circular dichroism, paramagnetic NMR spectroscopy, and NMR relaxation measurements. The data are consistent with binding of the sulfides in the distal side of the heme pocket with CPO and near the heme edge with HRP. A linear correlation between the binding constants of para-substituted sulfides to CPO and the Taft sigma I parameter suggests that these substrates act as donors in donor-acceptor complexes involving some residue of the protein chain. Spectral studies during turnover show that high enantioselectivity in the CPO-catalyzed oxidation of sulfides results from a reaction pathway that does not involve the accumulation of compound II enzyme intermediate.  相似文献   

3.
Resonance Raman scattering from cow milk lactoperoxidase (LPO) and its complexes with various electron donors and inhibitors was investigated. The Raman spectrum of LPO is strikingly close to that of hog intestinal peroxidase but distinctly dissimilar to that of horseradish peroxidase (HRP). The v10 frequency suggested the six-coordinate high-spin structure of heme for native LPO in contrast with the five-coordinate high-spin structure for HRP. For the v10 band, benzohydroxamic acid caused a frequency shift with HRP but not with LPO. Guaiacol, o-toluidine, and histidine brought about a frequency shift of the v4 mode for LPO but not for HRP. The frequency shift was restored upon removal of the substrate or inhibitor by dialysis. The down shift of the v4 frequency is considered to represent an appreciable donation of electrons from the substrate or inhibitor to the porphyrin LUMO and thus their direct interaction with the heme group. From the relative intensity of the shifted and unshifted v4 lines, the dissociation constant was determined to be Kd = 52 mM for guaiacol and Kd = 87 mM for histidine at pH 7.4. The binding of histidine was relatively retarded in the presence of sulfate anion (Kd = 150 mM for 0.53 M sulfate present), and imidazole alone yielded no frequency shift, indicating the binding of the carboxyl group of histidine to the protein cationic site on one hand and a weak charge-transfer interaction between the imidazole group and the heme group on the other.  相似文献   

4.
On the basis of optical difference spectra, lactoperoxidase (LPO) was shown to form a 1:1 complex with aromatic donor molecules: resorcinol, hydroquinone, phenol, p-cresol, guaiacol, aniline, and benzohydroxamic acid. As compared with horseradish peroxidase (HRP), the values of the dissociation constant, Kd, of LPO-donor complexes were found to be 4-720-fold larger and were not greatly changed in the presence of KCN and by changes in pH in the range 4-9. The apparent enthalpy and entropy of the binding reactions were found to be -13 kJ mol-1 and -29 J mol-1 K-1, respectively, somewhat smaller (in absolute value) than the corresponding values of HRP. The difference spectra of LPO-donor complexes resembled each other, in contrast to the case of HRP, and the bindings of the donors to LPO occurred in a competitive fashion between the donors. Incubation of LPO with phenylhydrazine and hydrogen peroxide markedly depressed donor binding, the intensity of the Soret band, and the catalytic activity, probably as the result of formation of meso-phenyl derivatives of the heme. These findings suggest that the binding of aromatic donors to LPO occurs at a specific site, probably near the heme edge, where the electron transfer in the peroxidase reaction may take place.  相似文献   

5.
The influence of substrate benzhydroxamic acid (BHA) and iron ligand (cyanide) on the thermodynamics and dynamics of each of the two binding sites of horseradish peroxidase (HRP) isozyme C has been investigated by 1H NMR spectroscopy. A combination of line-width analysis and saturation transfer spectroscopy has allowed the direct determination of the off-rate of substrate and ligand in the absence or presence of the other. These off-rates, together with available dissociation constants obtained by optical spectroscopy (Schonbaum, 1973), provide estimates for kon. The dissociation constant for cyanide binding to the BHA.HRP complex was also directly determined by NMR. In all cases the 1H NMR determined dynamic and thermodynamic data agree well with those values available in the literature. BHA binding leads to a 200-fold decrease in CN- affinity that arises from a factor greater than 10 decrease in koff(CN-) and greater than 2 x 10(3) decrease in kon(CN-). While a portion of the decrease in kon(CN-) can be rationalized by water coordination of the iron in the BHA.HRP complex, the additional decrease in kon(CN-) and that in koff(CN-) indicates that BHA in the binding pocket blocks the CN- ligation channel and serves as a "gate" to CN- exchange. This view is supported by observing a factor greater than 4 decrease in distal His labile proton exchange with bulk water in HRP-CN upon BHA binding. The ternary complex BHA.HRP-CN is shown to be heterogeneous. While the thermodynamics of BHA and CN- binding appear similar in the two ternary complexes, the BHA on- and off-rates for the two complexes differ by a factor of approximately 10. The two heterogeneous forms interconvert at 25 degrees C at approximately 2 x 10(2) s-1, precluding the determination of any difference in the CN- binding rates by saturation transfer. The greater lability of one of the two ternary complexes is attributed to an alternate orientation of some distal residue that blocks the substrate binding channel in one of the forms. Transferred nuclear Overhauser effects from the heme to BHA in the ternary complex reveal that the BHA substrate is in contact not only with the heme pyrrole D substituents but also with the distal His 42, indicating that the polar side chain of BHA extends well into the distal heme pocket.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

7.
Lactoperoxidase (LPO) belongs to mammalian heme peroxidase superfamily, which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO), and thyroid peroxidase (TPO). LPO catalyzes the oxidation of a number of substrates including thiocyanate while TPO catalyzes the biosynthesis of thyroid hormones. LPO is also been shown to catalyze the biosynthesis of thyroid hormones indicating similar functional and structural properties. The binding studies showed that 2‐mercaptoimidazole (MZY) bound to LPO with a dissociation constant of 0.63 µM. The inhibition studies showed that the value of IC50 was 17 µM. The crystal structure of the complex of LPO with MZY showed that MZY bound to LPO in the substrate‐binding site on the distal heme side. MZY was oriented in the substrate‐binding site in such a way that the sulfur atom is at a distance of 2.58 Å from the heme iron. Previously, a similar compound, 3‐amino‐1,2,4‐triazole (amitrole) was also shown to bind to LPO in the substrate‐binding site on the distal heme side. The amino nitrogen atom of amitrole occupied the same position as that of sulfur atom in the present structure indicating a similar mode of binding. Recently, the structure of the complex of LPO with a potent antithyroid drug, 1‐methylimidazole‐2‐thiol (methimazole, MMZ) was also determined. It showed that MMZ bound to LPO in the substrate‐binding site on the distal heme side with 2 orientations. The position of methyl group was same in the 2 orientations while the positions of sulfur atom differed indicating a higher preference for a methyl group.  相似文献   

8.
The oxidation of melatonin by the mammalian myeloperoxidase (MPO) provides protection against the damaging effects of reactive oxygen species. Indole derivatives, such as melatonin and serotonin, are also substrates of the plant horseradish peroxidase (HRP), but this enzyme exhibits remarkable differences from MPO in the specificity and reaction rates for these compounds. A structural understanding of the determinants of the reactivity of these enzymes to indole derivatives would greatly aid their exploitation for biosynthetic and drug design applications. Consequently, after validation of the docking procedure, we performed computational docking of melatonin and serotonin to structural models of the ferric and compound I and II (co I and co II, respectively) states of HRP and MPO. The substrates dock at the heme edge on the distal side, but with different orientations in the two proteins. The distal cavity is larger in MPO than in HRP; however, in MPO, the substrates make closer contacts with the heme involving ring stacking, whereas in HRP, no ring stacking is observed. The observed differences in substrate binding may contribute to the higher reaction rates and lower substrate specificity of MPO relative to those of HRP. The docking results, along with the previously measured heme-protein reduction potentials, suggest that the differentially lowered reaction rates of co II of HRP and MPO with respect to those of co I could stem from as yet undetermined conformational or electrostatic differences between the co I and co II states of MPO, which are absent in HRP.  相似文献   

9.
Chlorite dismutase (EC 1.13.11.49), an enzyme capable of reducing chlorite to chloride while producing molecular oxygen, has been characterized using EPR and optical spectroscopy. The EPR spectrum of GR-1 chlorite dismutase shows two different high-spin ferric heme species, which we have designated 'narrow' (gx,y,z = 6.24, 5.42, 2.00) and 'broad' (gz,y,x = 6.70, 5.02, 2.00). Spectroscopic evidence is presented for a proximal histidine co-ordinating the heme iron center of the enzyme. The UV/visible spectrum of the ferrous enzyme and EPR spectra of the ferric hydroxide and imidazole adducts are characteristic of a heme protein with an axial histidine co-ordinating the iron. Furthermore, the substrate analogs nitrite and hydrogen peroxide have been found to bind to ferric chlorite dismutase. EPR spectroscopy of the hydrogen peroxide adduct shows the loss of both high-spin and low-spin ferric signals and the appearance of a sharp radical signal. The NO adduct of the ferrous enzyme exhibits a low-spin EPR signal typical of a five-co-ordinate heme iron nitrosyl adduct. It seems that the bond between the proximal histidine and the iron is weak and can be broken upon binding of NO. The midpoint potential, Em(Fe3+/2+) = -23 mV, of chlorite dismutase is higher than for most heme enzymes. The spectroscopic features and redox properties of chlorite dismutase are more similar to the gas-sensing hemoproteins, such as guanylate cyclase and the globins, than to the heme enzymes.  相似文献   

10.
S Modi  D V Behere  S Mitra 《Biochemistry》1989,28(11):4689-4694
The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.  相似文献   

11.
In order to understand the heme distal structure of neuronal nitric oxide synthase (nNOS), we studied cyanide binding to the ferric wild-type and substrate binding site mutants, Glu592Ala and Tyr588His, of the isolated oxygenase domain in the absence and presence of substrates and inhibitors. Cyanide bound to isolated heme-bound oxygenase domains (nNOSox) in the absence of the substrates with the dissociation constant (K(d)) of 3.1 mM. The presence of the substrates, L-Arg and NHA, did not change the K(d) value. However, cyanide binding was almost abolished in the presence of inhibitors such as NAME, thiocitrulline and 7-NI. The effect of the inhibitors were not observed for the Glu592Ala mutant, while similar strong inhibiting effects were observed for the Tyr588His mutant. We discuss the binding fashion of those inhibitors to the heme substrate binding site of nNOS.  相似文献   

12.
Rates for the reaction of nitric oxide with several ferric heme proteins and model compounds have been measured. The NO combination rates are markedly affected by the presence or absence of distal histidine. Elephant myoglobin in which the E7 distal histidine has been replaced by glutamine reacts with NO 500-1000 times faster than do the native hemoglobins or myoglobins. By contrast, there is no difference in the CO combination rate constants of sperm whale and elephant myoglobins. Studies on ferric model compounds for the R and T states of hemoglobin indicate that their NO combination rate constants are similar to those observed for the combination of CO with the corresponding ferro derivatives. The last observation suggests that the presence of an axial water molecule at the ligand binding site of ferric hemoglobin A prevents it from exhibiting significant cooperativity in its reactions with NO.  相似文献   

13.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

14.
The normally hexa coordinate ferrous form of neuroglobin binds CO by replacement of the heme-linked distal histidine residue. We have studied this reaction in detail using stopped flow techniques. The reaction time courses are complex at all the wavelengths studied. Specifically the reaction with CO occurs in two temporally separable phases, each of which shows a hyperbolic dependence of rate on CO concentration, indicating they each arise from histidine replacement by CO. Analysis of the observed rates as a function of the CO concentration, measured in the pH range 6.0-8.0, allows us to determine both the rate of histidine-heme ligand binding and dissociation for each of the two forms of the protein present in solution at each pH value. The pH dependence of the histidine association and dissociation rates is complex, as are the derived equilibrium constants for distal histidine binding. The spectral change associated with each reaction phase is very similar and independent of the CO concentration, showing that the two protein forms responsible for the two observed kinetic processes are not in equilibrium on the time scale of our investigations. Our data suggests that, unlike many other heme proteins, neuroglobin displays complex reactivity with ligands in the ferrous form due to heme rotational disorder, as has previously been reported for the ferric form of the protein.  相似文献   

15.
Interaction of thiocyanate with horseradish peroxidase (HRP) was investigated by relaxation rate measurements (at 50.68 MHz) of the 15N resonance of thiocyanate nitrogen and by following the hyperfine shifted ring methyl proton resonances (at 500 MHz) of the heme group of SCN-.HRP solutions. At pH 4.0, the apparent dissociation constant (KD) for thiocyanate binding to HRP was deduced to be 158 mM from the relaxation rate measurements. Chemical shift changes of 1- and 8-ring methyl proton resonances in the presence of various amounts of thiocyanate at pH 4.0 yielded KD values of 166 and 136 mM, respectively. From the pH dependence of KD and the 15N resonance line width, it was observed that thiocyanate binds to HRP only under acidic conditions (pH less than 6). The binding was found to be facilitated by protonation of an acid group on the enzyme with pKa 4.0. The pH dependence of the 15N line width as well as the apparent dissociation constant were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate in deprotonated ionic form binds to the enzyme in protonated acidic form. The KD for thiocyanate binding to HRP was also evaluated in the presence of an excess of exogenous substrates such as resorcinol, cyanide, and iodide ions. It was found that the presence of cyanide (which binds to heme iron at the sixth coordination position) and resorcinol did not have any effect on the binding of thiocyanate, indicating that the binding site of the thiocyanate ion is located away from the ferric center as well as from the aromatic donor binding site. The KD in the presence of iodide, however, showed that iodide competes with thiocyanate for binding at the same site. The distance of the bound thiocyanate ion from the ferric center was deduced from the 15N relaxation time measurements and was found to be a 6.8 A. From the distance as well as the change in the chemical shifts and line width of 1- and 8-methyl proton resonances, it is suggested that the binding site of thiocyanate may be located near heme, placed symmetrically with respect to 1- and 8-methyl groups of the heme of HRP. Similarity in the modes of binding of iodide and thiocyanate suggests that the oxidation of thiocyanate ion by H2O2 may also proceed via the two-electron transfer pathway under acidic conditions, as is the case for iodide.  相似文献   

16.
We have previously shown [Badyal, S. K., et al. (2006) J. Biol. Chem. 281, 24512-24520] that the distal histidine (His42) in the W41A variant of ascorbate peroxidase binds to the heme iron in the ferric form of the protein but that binding of the substrate triggers a conformational change in which His42 dissociates from the heme. In this work, we show that this conformational rearrangement also occurs upon reduction of the heme iron. Thus, we present X-ray crystallographic data to show that reduction of the heme leads to dissociation of His42 from the iron in the ferrous form of W41A; spectroscopic and ligand binding data support this observation. Structural evidence indicates that heme reduction occurs through formation of a reduced, bis-histidine-ligated species that subsequently decays by dissociation of His42 from the heme. Collectively, the data provide clear evidence that conformational movement within the same heme active site can be controlled by both ligand binding and metal oxidation state. These observations are consistent with emerging data on other, more complex regulatory and sensing heme proteins, and the data are discussed in the context of our developing views in this area.  相似文献   

17.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

18.
M Sono 《Biochemistry》1990,29(6):1451-1460
The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.  相似文献   

19.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

20.
Horseradish Peroxidase (HRP) is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications of three surface-exposed lysines (K174, K232 and K241). In this computational study, we altered these lysines to phenylalanine residues to model those chemical modifications or genetic manipulations in which these positively charged lysines are converted to aromatic hydrophobic residues. Simulation results implied that upon these substitutions, the protein structure becomes less flexible. Stability gains are likely to be achieved due to the increased number of stable hydrogen bonds, improved heme-protein interactions and more integrated proximal Ca2+ binding pocket. We also found a new persistent hydrogen bond between the protein moiety (F174) and the heme prosthetic group as well as two stitching hydrogen bonds between the connecting loops GH and F′F″ in mutated HRP. However, detailed analysis of functionally related structural properties and dynamical features suggests reduced reactivity of the enzyme toward its substrates. Molecular dynamics simulations showed that substitutions narrow the bottle neck entry of peroxide substrate access channel and reduce the surface accessibility of the distal histidine (H42) and heme prosthetic group to the peroxide and aromatic substrates, respectively. Results also demonstrated that the area and volume of the aromatic-substrate binding pocket are significantly decreased upon modifications. Moreover, the hydrophobic patch functioning as a binding site or trap for reducing aromatic substrates is shrunk in mutated enzyme. Together, the results of this simulation study could provide possible structural clues to explain those experimental observations in which the protein stability achieved concurrent with a decrease in enzyme activity, upon manipulation of charge/hydrophobicity balance at the protein surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号