首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein S (PS) is a vitamin K-dependent glycoprotein that consists of several modules including a C-terminal sex hormone-binding globulin (SHBG)-like domain that has been subdivided into two laminin LG-type domains. The SHBG-like region of PS is known to bind to a complement regulator molecule, C4b-binding protein (C4BP), coagulation factor Va (FVa) and receptor tyrosine kinases. Inherited PS deficiency has been associated with thromboembolic disease. Yet, study of the mechanisms by which the SHBG-like region of PS serves its essential functions has so far been hampered because of the lack of structural information. Recently, the three-dimensional (3D) structure of LG domains from plasma SHBG, laminin and neurexin have been reported and were found related to the pentraxin family. We used these X-ray structures to build homology models of the SHBG-like region of human PS. We then analyzed previously reported experimental/clinical data in the light of the predicted structures. A potential calcium-binding site is found in the first LG domain of PS and D292 could play a role in this process. This region is close to the interface between the two LG domains and is also surrounded by segments that have been suggested by synthetic peptide studies to be important for C4BP or FVa binding. The 39 point mutations linked to PS deficiencies or reported as neutral variants were rationalized in the 3D structure. Proteins 2001;43:203-216.  相似文献   

2.
Monoclonal antibodies for human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C, were prepared and their epitopes characterized. All six antibodies (MFTM-1-MFTM-6) bound to an elastase-digested active fragment of thrombomodulin, which contains six consecutive EGF domains. Binding of thrombomodulin to these antibodies did not depend on Ca2+ concentration. MFTM-4, MFTM-5, and MFTM-6 strongly inhibited protein C activation by thrombin and thrombomodulin. MFTM-4 and MFTM-5 inhibited thrombin binding to fixed thrombomodulin and bound to a recombinant mutant EGF456 protein, which contained the fourth, fifth, and sixth EGF domains of thrombomodulin. However, MFTM-6 did not inhibit thrombin binding to thrombomodulin and did not bind to EGF456 protein. Binding of thrombomodulin to fixed MFTM-4 or MFTM-5 was competitively inhibited by a recombinant mutant EGF45 protein which contained the fifth and sixth EGF-domains. These results suggest that epitopes of MFTM-4 and MFTM-5 are located in the fifth EGF domain of thrombomodulin. Thus, the binding site for thrombin is located in the fifth EGF domain. These results also suggest that an epitope for MFTM-6 is located at a region near the binding site for gamma-carboxyglutamic acid residues of protein C via Ca2+ on thrombomodulin.  相似文献   

3.
Anticoagulant protein S interacts with the complement regulatory protein C4b-binding protein (C4BP) via its sex-hormone-binding globulin (SHB6)-like region, which contains two globular (G) domains. Similar G domains are found in Gas6, a protein homologous to protein S, which is not known to bind C4BP or to have any anticoagulant activity. To determine the relative importance of the two G domains in protein S for C4BP protein binding, three recombinant protein S chimeras were produced having either of the two globular domains, or the whole SHB6-like globulin region, replaced by corresponding parts from Gas6. The chimeras were tested for binding to immobilized C4BP using surface-plasmon-resonance technology and microtiter plate-based assays. In both systems, chimeras containing either only globular domains G1 or G2 from protein S were found to bind C4BP. Binding was stimulated by Ca2+ in a manner similar to that found for wild-type protein S. The affinities for C4BP of both chimeras containing individual G domains from protein S, were lower than that of wild-type protein S. Chimera II, containing the G1 domain from protein S, consistently bound C4BP more efficiently than chimera I, which had the protein S-derived G2 domain. The chimera containing the whole SHB6-like globulin region from Gas6 interacted considerably more weakly with C4BP. Our results demonstrate that both G domains of protein S are involved in the interaction between protein S and C4BP and that full affinity binding is dependent on contributions from both domains.  相似文献   

4.
Factor V(a) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a platelet membrane surface. A platelet membrane lipid, phosphatidylserine (PS), regulates the proteolytic activity of factor X(a) as well as the structure of prothrombin. Here we ask whether PS also regulates the structure and cofactor activity of factor V(a), which is a heterodimer composed of one heavy chain (A1-A2 domains) and one light chain (A3-C1-C2 domains). We use fluorescence, circular dichroism, equilibrium dialysis, and activity measurements to demonstrate the following: (1) Factor V(a) has four sites for dicaproyl-sn-glycero-3-phospho-L-serine (C(6)PS, a soluble form of PS); the heavy and light chains each bind two C(6)PS molecules. (2) In the absence of Ca(2+), only two sites remain, one in the heavy chain and another in the light chain. (3) Binding to these sites causes conformational changes evidenced by changes in intrinsic fluorescence and in CD spectra and changes in cofactor activity. (4) At least some of the four lipid binding sites are nonspecific with respect to soluble lipid species, but the site(s) that regulate(s) cofactor activity is (are) specific for C(6)PS, phosphatidic acid, or phosphatidyl(homo)serine and produce a response comparable to that seen with a PS-containing membrane. (5) Like Ca(2+), C(6)PS also mediates the interaction between factor V(a) heavy (V(a)-HC) and light (V(a)-LC) chains. We conclude that PS regulates both the cofactor and the enzyme of the prothrombin-activating complex.  相似文献   

5.
The epithelial Na+ channel (ENaC) absorbs Na+ across the apical membrane of epithelia. The activity of ENaC is controlled by its interaction with Nedd4; mutations that disrupt this interaction increase Na+ absorption, causing an inherited form of hypertension (Liddle's syndrome). Nedd4 contains an N-terminal C2 domain, a C-terminal ubiquitin ligase domain, and multiple WW domains. The C2 domain is thought to be involved in the Ca2+-dependent localization of Nedd4 at the cell surface. However, we found that the C2 domain was not required for human Nedd4 (hNedd4) to inhibit ENaC in both Xenopus oocytes and Fischer rat thyroid epithelia. Rather, hNedd4 lacking the C2 domain inhibited ENaC more potently than wild-type hNedd4. Earlier work indicated that the WW domains bind to PY motifs in the C terminus of ENaC. However, it is not known which WW domains mediate this interaction. Glutathione S-transferase-fusion proteins of WW domains 2-4 each bound to alpha, beta, and gammaENaC in vitro. The interactions were abolished by mutation of two residues. WW domain 3 (but not the other WW domains) was both necessary and sufficient for the binding of hNedd4 to alphaENaC. WW domain 3 was also required for the inhibition of ENaC by hNedd4; inhibition was nearly abolished when WW domain 3 was mutated. However, the interaction between ENaC and WW domain 3 alone was not sufficient for inhibition. Moreover, inhibition was decreased by mutation of WW domain 2 or WW domain 4. Thus, WW domains 2-4 each participate in the functional interaction between hNedd4 and ENaC in intact cells.  相似文献   

6.
Protein kinase C (PKC) family members are allosterically activated following membrane recruitment by specific membrane-targeting modules. Conventional PKC isozymes are recruited to membranes by two such modules: a C1 domain, which binds diacylglycerol (DAG), and a C2 domain, which is a Ca2+-triggered phospholipid-binding module. In contrast, novel PKC isozymes respond only to DAG, despite the presence of a C2 domain. Here, we address the molecular mechanism of membrane recruitment of the novel isozyme PKCdelta. We show that PKCdelta and a conventional isozyme, PKCbetaII, bind membranes with comparable affinities. However, dissection of the contribution of individual domains to this binding revealed that, although the C2 domain is a major determinant in driving the interaction of PKCbetaII with membranes, the C2 domain of PKCdelta does not bind membranes. Instead, the C1B domain is the determinant that drives the interaction of PKCdelta with membranes. The C2 domain also does not play any detectable role in the activity or subcellular location of PKCdelta in cells; in vivo imaging studies revealed that deletion of the C2 domain does not affect the stimulus-dependent translocation or activity of PKCdelta. Thus, the increased affinity of the C1 domain of PKCdelta allows this isozyme to respond to DAG alone, whereas conventional PKC isozymes require the coordinated action of Ca2+ binding to the C2 domain and DAG binding to the C1 domain for activation.  相似文献   

7.
Protein C is a vitamin K-dependent regulator of blood coagulation. It has beta-hydroxyaspartic acid in position 71 which is in the first of its two domains that are homologous to epidermal growth factor (EGF). This region has recently been demonstrated to have a Ca2+ binding site with a Kd of approximately 100 microM. Recombinant human protein C, expressed in mammalian tissue culture, had full biological activity and contained beta-hydroxyaspartic acid. Furthermore, it had a Ca2+-dependent epitope in the EGF-like domain, recognized by a monoclonal antibody. In contrast, a mutant recombinant human protein C in which beta-hydroxyaspartic acid had been replaced with glutamic acid in position 71 did not have the Ca2+-dependent epitope, and its biological activity was reduced to about 10% of normal. Fab' fragments of this antibody inhibited the anticoagulant activity of plasma-derived activated protein C, apparently by interfering with the interaction between activated protein C and its cofactor, protein S. The latter contains four tandemly arranged EGF homology domains. We propose that beta-hydroxyaspartic acid is directly involved in Ca2+ binding in protein C and in related proteins and that protein C interacts with protein S by means of its EGF homology regions.  相似文献   

8.
Factor V(a) (FV(a)) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a membrane surface. FV(a) is a heterodimer composed of one heavy chain (A1 and A2 domains) and one light chain (A3, C1, and C2 domains). We use fluorescence, circular dichroism, and equilibrium dialysis to demonstrate that (1) the FV C2 domain expressed in Sf9 cells binds one molecule of C6PS with a k(d) of approximately 2 microM, (2) stabilizing changes occur in the FV C2 domain upon C6PS binding, (3) the C6PS binding site in the FV C2 domain is located near residue Cys(2113), which reacts with DTNB, and (4) binding to a PS-containing membrane is an order of magnitude tighter than that to soluble C6PS. Coupled with a recently published crystal structure of the C2 domain, these results support a model for the mechanism of C2-membrane interaction.  相似文献   

9.
The X-ray structure of m-calpain shows that domain III of the large subunit is structurally related to C2 domains, Ca2+-regulated lipid binding modules in many enzymes. To address whether this structural similarity entails functional analogy, we have characterized recombinant domain III from rat micro- and m-calpain and Drosophila CALPB. In a Ca2+ overlay assay domain III displays a large capacity for Ca2+ binding, commensurable with that of domain IV, the principal Ca2+-binding domain of calpains. The amount of Ca2+ bound to domain III increases 2- to 10-fold upon the addition of liposomes containing 20-40% di- and triphosphoinositides. Conversely, phospholipid-binding in spin-column size-exclusion chromatography is significantly promoted by Ca2+, in a manner similar to known C2 domains. These results suggest that domain III might be the primary lipid binding site of calpain and may play a decisive role in orchestrating Ca2+- and lipid activation of the enzyme.  相似文献   

10.
In an attempt to elucidate the integrin-binding site within laminin-511 (alpha5beta1gamma1), we mapped the epitope for mAb 4C7, which recognizes the globular (G) domain of the laminin alpha5 chain and inhibits binding of integrin alpha6beta1 to laminin-511, using a series of recombinant laminin-511 mutants with deletions or substitutions in the G domain. Deletion of the LG2-5 modules only partially compromised the 4C7 binding activity, while deletion of all 5 LG modules completely abrogated the activity, indicating that the epitope for 4C7 resides in the LG1 module. In support of this conclusion, 4C7 reactivity was abolished when the LG1 module of laminin-511 was swapped with the corresponding module of laminin-111, but the reactivity was retained after swapping the LG2 or LG3 module. Despite the requirement of LG1 for 4C7 binding, a recombinant LG1 module failed to bind to 4C7 when expressed alone or in tandem with LG2, but exhibited significant 4C7 binding activity when expressed as an array of LG1-3. These results indicate that 4C7 recognizes an epitope in the LG1 module, whose active conformation is stabilized in the context of the LG1-3 modules. Despite their 4C7 binding activities, neither the recombinant LG1-3 fragment nor the LG2 and LG3 swap mutants were capable of binding to integrin alpha6beta1. Thus, the integrin binding activity does not necessarily parallel the 4C7 reactivity, and possibly requires a strictly defined conformation of the LG1 module which can only be attained within an array of the intact LG1-3 modules connected to the preceding coiled-coil domain.  相似文献   

11.
To elucidate the binding sites for thrombin and protein C in the six epidermal growth factor (EGF) domains of human thrombomodulin, recombinant mutant proteins were expressed in COS-1 cells. Mutant protein EGF456, which contains the fourth, fifth, and sixth EGF domains from the NH2 terminus of thrombomodulin, showed complete cofactor activity in thrombin-catalyzed protein C activation, as did intact thrombomodulin or elastase-digested thrombomodulin. EGF56, containing the fifth and sixth EGF domains, did not have cofactor activity; but EGF45, containing the fourth and fifth EGF domains, had about one-tenth of the cofactor activity of EGF456. Thrombin binding to attached recombinant thrombomodulin (D123) was inhibited by EGF45 as well as by EGF56. A synthetic peptide (ECPEGYILDDGFICTDIDE), corresponding to Glu-408 to Glu-426 in the fifth EGF domain, inhibited thrombin binding to attached thrombomodulin (D123) with an apparent Ki of 95 microM. At Ca2+ concentrations of 0.25-0.3 mM, intact protein C was maximally activated by thrombin in the presence of EGF45, EGF456, or EGF1-6, which contains the first to sixth EGF domains; but such maximum cofactor activity was not observed when gamma-carboxyglutamic acid-domainless protein C was used. These findings suggest that: 1) thrombin binds to the latter half of the fifth EGF domain; and 2) protein C binds to the fourth EGF domain of thrombomodulin through Ca2+ ions.  相似文献   

12.
Coagulation factor X is a multidomain proenzyme of a serine protease. Calcium ions bind to the vitamin K-dependent gamma-carboxyglutamic acid (Gla) residues and to a site in the NH2-terminal of two epidermal growth factor (EGF)-like domains. To study structure-function relationships in the NH2-terminal part of factor X and to determine the structure of isolated domains, we have developed methods that allow the subsequent isolation of the first or both EGF-like domains with or without an attached Gla domain from controlled proteolytic digests of the protein. The Ca2(+)-induced changes of the intrinsic protein fluorescence were measured to elucidate whether the isolated fragments retain their native conformation. Changes in the fluorescence caused by Ca2+ binding were found to result from perturbations of the environment of the Trp residue in position 41. Calcium ion binding to the Gla-containing region linked to the NH2-terminal EGF-like domain was identical with that to intact factor X, indicating a native orientation of the ligand binding groups in the fragment. In contrast, the isolated Gla peptide had a lower affinity for Ca2+, suggesting that the NH2-terminal EGF-like domain serves as a scaffold for the folding of the Gla region. Similarly, the presence of the Gla region was found to increase the affinity of the Gla-independent site in the first EGF-like domain for Ca2+. The metal ion-induced resistance against chymotryptic cleavage COOH-terminal of Tyr-44 in intact factor X is similar in the isolated fragment that contains the Gla region linked to one EGF-like domain, indicating a native conformation of the fragment in the presence of Ca2+. Furthermore, the Gla-independent metal ion binding site binds Ca2+ but does not appear to bind Mg2+.  相似文献   

13.
Fuson KL  Montes M  Robert JJ  Sutton RB 《Biochemistry》2007,46(45):13041-13048
Release of neurotransmitter from synaptic vesicles requires the Ca2+/phospholipid-binding protein synaptotagmin 1. There is considerable evidence that cooperation between the tandem C2 domains of synaptotagmin is a requirement of regulated exocytosis; however, high-resolution structural evidence for this interaction has been lacking. The 2.7 A crystal structure of the cytosolic domains of human synaptotagmin 1 in the absence of Ca2+ reveals a novel closed conformation of the protein. The shared interface between C2A and C2B is stabilized by a network of interactions between residues on the C-terminal alpha-helix of the C2B domain and residues on loops 1-3 of the Ca2+-binding region of C2A. These interactions alter the overall shape of the Ca2+-binding pocket of C2A, but not that of C2B. Thus, synaptotagmin 1 C2A-C2B may utilize a novel regulatory mechanism whereby one C2 domain could regulate the other until an appropriate triggering event decouples them.  相似文献   

14.
Blood coagulation factor IX is composed of discrete domains with an NH2-terminal vitamin K-dependent gamma-carboxyglutamic acid (Gla)-containing region, followed by two domains that are homologous with the epidermal growth factor (EGF) precursor and a COOH-terminal serine protease part. Calcium ions bind to the Gla-containing region and to the NH2-terminal EGF-like domain. To be able to determine the structure and function of the Gla- and EGF-like domains, we have devised a method for cleaving factor IX under controlled conditions and isolating the intact domains in high yield, either separately or linked together. The Ca2+ and Mg2+ binding properties of these fragments were examined by monitoring the metal ion-induced changes in intrinsic protein fluorescence. A fragment, consisting of the Gla region linked to the two EGF-like domains, bound Ca2+ in a manner that was indistinguishable from that of the intact molecule, indicating a native conformation. The Ca2+ affinity of the isolated Gla region was lower, suggesting that the EGF-like domains function as a scaffold for the folding of the Gla region. The Gla-independent high affinity metal ion binding site in the NH2-terminal EGF-like domain was shown to bind Ca2+ but not Mg2+. A comparison with similar studies of factor X (Persson, E., Bj?rk, I., and Stenflo, J. (1991) J. Biol. Chem. 266, 2444-2452) suggests that the Ca2(+)-induced fluorescence quenching is due to an altered environment primarily around the tryptophan residue in position 42.  相似文献   

15.
Thrombomodulin, an endothelial thrombin receptor, acts as a cofactor for the thrombin-catalyzed activation of anticoagulant protein C. The extracellular region of human thrombomodulin consists of three tentative domains, a NH2-terminal domain (D1), a domain involving six consecutive epidermal growth factor-like structures (D2), and an O-glycosylation-rich domain (D3). To identify the domain onto which thrombin binds, a series of recombinant proteins corresponding to the entire protein, D1, D2, D1 + D2, D1 + D2 + D3, and D2 + D3 were expressed in simian COS-1 cells. The proteins were partially purified by rabbit anti-thrombomodulin-F(ab')2-agarose chromatography. Western blotting analysis showed the expression of the respective recombinant proteins. All proteins involving D2, as well as D2 alone, had cofactor activity that allowed binding directly to thrombin, but D1 did not. The cofactor activity of the entire protein but not the mutants is increased in the presence of phospholipids and this is the only protein that binds to the phospholipid layer. These results indicate that the domain involving the epidermal growth factor-like structures of thrombomodulin is essential for thrombin binding and expression of the cofactor activity for protein C activation and that none of the extracellular domains interact with phospholipids.  相似文献   

16.
Lutheran (Lu) blood group antigens and the basal cell adhesion molecule antigen reside on two glycoproteins that belong to the Ig superfamily (IgSF) and carry five Ig-like extracellular domains. These glycoproteins act as widely expressed adhesion molecules and represent the unique receptors for laminin-10/11 in erythroid cells. Here, we report the mapping of IgSF domains responsible for binding to laminin. In plasmonic resonance surface experiments, only recombinant Lu proteins containing the N-terminal IgSF domains 1-3 were able to bind laminin-10/11 and to inhibit binding of laminin to Lu-expressing K562 cells. Mutant recombinant proteins containing only IgSF domain 1, domains 1 + 2, domains 1 + 3, domains 2 + 3, domain 3, domain 4, domain 5, and domains 4 + 5 failed to bind laminin as well as a construct containing all of the extracellular domains except domain 3. Altogether, these results indicate that IgSF domains 1-3 are involved in laminin binding and that a specific spatial arrangement of these three first domains is most probably necessary for interaction. Neither the RGD nor the N-glycosylation motifs present in IgSF domain 3 were involved in laminin binding.  相似文献   

17.
S Tsuda  K Ogura  Y Hasegawa  K Yagi  K Hikichi 《Biochemistry》1990,29(20):4951-4958
Binding of Mg2+ to rabbit skeletal muscle troponin C (TnC) is studied by means of two-dimensional (2D) 1H NMR spectroscopy. Using the sequence-specific resonance assignment method we assign several resonances of TnC in the Mg2(+)-saturated state. Assigned resonances are used as probes of the following titration experiments: (1) Mg2+ titration of apo-TnC, (2) Mg2+ titration of Ca2TnC, and (3) Mg2+ titration of Ca4TnC. In experiment 1, the slow-exchange behavior is observed for resonances of Phe99, Asp107, Gly108, Tyr109, Ile110, Asp111, His125, Gly144, Arg145, Ile146, Asp147, and Phe148 located at the high-affinity Ca2(+)-binding sites in the C-terminal-half domain. In experiments 1 and 2, the fast-exchange behavior is observed for resonances of Gly32, Asp33, Ser35, Gly68, Thr69, and Asp71 located at the low-affinity Ca2(+)-binding sites in the N-terminal-half domain. These results suggest that Mg2+ ions bind to the N domain as well as the C domain. In experiment 3, no spectral change is observed for all above-mentioned residues in the C domain and also for Gly32 and Gly68 in the N domain. It can be concluded that all Ca2(+)-binding sites in both the N and C domains can bind Mg2+ ions. No significant change is observed for resonances of Phe23, Ile34, Val68, and Phe72 in experiments 1 and 2. These results suggest that Mg2+ binding to the N domain does not induce conformational change in the hydrophobic region of the N domain. 2D-NMR spectra and Mg2(+)-titration data suggest that the antiparallel beta-sheet conformation is formed in both the N and C domains when Mg2+ ions bind to the two domains.  相似文献   

18.
19.
Vitamin K-dependent protein S is a cofactor of activated protein C, a serine protease that regulates blood coagulation. Deficiency of protein S can cause venous thrombosis. Protein S has four EGF domains in tandem; domains 2-4 bind calcium with high affinity whereas domains 1-2 mediate interaction with activated protein C. We have now solved the solution structure of the EGF3-4 fragment of protein S. The linker between the two domains is similar to what has been observed in other calcium-binding EGF domains where it provides an extended conformation. Interestingly, a disagreement between NOE and RDC data revealed a conformational heterogeneity within EGF3 due to a hinge-like motion around Glu186 in the Cys-Glu-Cys sequence, the only point in the domain where flexibility is allowed. The dominant, bent conformation of EGF3 in the pair has no precedent among calcium-binding EGF domains. It is characterized by a change in the psi angle of Glu186 from 160 degrees +/- 40 degrees , as seen in ten other EGF domains, to approximately 0 degrees +/- 15 degrees . NOESY data suggest that Tyr193, a residue not conserved in other calcium-binding EGF domains (except in the homologue Gas6), induces the unique fold of EGF3. However, SAXS data, obtained on EGF1-4 and EGF2-4, showed a dominant, extended conformation in these fragments. This may be due to a counterproductive domain-domain interaction between EGF2 and EGF4 if EGF3 is in a bent conformation. We speculate that the ability of EGF3 to adopt different conformations may be of functional significance in protein-protein interactions involving protein S.  相似文献   

20.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号