首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Copper transport by the P(1)-ATPase ATP7B, or Wilson disease protein (WNDP),1 is essential for human metabolism. Perturbation of WNDP function causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the WNDP nucleotide-binding domain (N-domain), where they are predicted to disrupt ATP binding. The mechanism by which the N-domain coordinates ATP is presently unknown, because residues important for nucleotide binding in the better characterized P(2)-ATPases are not conserved within the P(1)-ATPase subfamily. To gain insight into nucleotide binding under normal and disease conditions, we generated the recombinant WNDP N-domain and several WD mutants. Using isothermal titration calorimetry, we demonstrate that the N-domain binds ATP in a Mg(2+)-independent manner with a relatively high affinity of 75 microm, compared with millimolar affinities observed for the P(2)-ATPase N-domains. The WNDP N-domain shows minimal discrimination between ATP, ADP, and AMP, yet discriminates well between ATP and GTP. Similar results were obtained for the N-domain of ATP7A, another P(1)-ATPase. Mutations of the invariant WNDP residues E1064A and H1069Q drastically reduce nucleotide affinities, pointing to the likely role of these residues in nucleotide coordination. In contrast, the R1151H mutant exhibits only a 1.3-fold reduction in affinity for ATP. The C1104F mutation significantly alters protein folding, whereas C1104A does not affect the structure or function of the N-domain. Together, the results directly demonstrate the phenotypic diversity of WD mutations within the N-domain and indicate that the nucleotide-binding properties of the P(1)-ATPases are distinct from those of the P(2)-ATPases.  相似文献   

2.
Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N and C), each bearing a Zn-dependent active site. We modeled the 3D-structure of the ACE N-domain using known structures of the C-domain of human ACE and the ACE homologue, ACE2, as templates. Two monoclonal antibodies (mAb), 3A5 and i2H5, developed against the human N-domain of ACE, demonstrated anticatalytic activity. N-domain modeling and mutagenesis of 21 amino acid residues allowed us to define the epitopes for these mAbs. Their epitopes partially overlap: amino acid residues K407, E403, Y521, E522, G523, P524, D529 are present in both epitopes. Mutation of 4 amino acid residues within the 3A5 epitope, N203E, R550A, D558L, and K557Q, increased the apparent binding of mAb 3A5 with the mutated N-domain 3-fold in plate precipitation assay, but abolished the inhibitory potency of this mAb. Moreover, mutation D558L dramatically decreased 3A5-induced ACE shedding from the surface of CHO cells expressing human somatic ACE. The inhibition of N-domain activity by mAbs 3A5 and i2H5 obeys similar kinetics. Both mAbs can bind to the free enzyme and enzyme-substrate complex, forming E.mAb and E.S.mAb complexes, respectively; however, only complex E.S can form a product. Kinetic analysis indicates that both mAbs bind better with the ACE N-domain in the presence of a substrate, which, in turn, implies that binding of a substrate causes conformational adjustments in the N-domain structure. Independent experiments with ELISA demonstrated better binding of mAbs 3A5 and i2H5 in the presence of the inhibitor lisinopril as well. This effect can be attributed to better binding of both mAbs with the "closed" conformation of ACE, therefore, disturbing the hinge-bending movement of the enzyme, which is necessary for catalysis.  相似文献   

3.
p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.  相似文献   

4.
The lactose permease is an integral membrane protein that cotransports H(+) and lactose into the bacterial cytoplasm. Previous work has shown that bulky substitutions at glycine 64, which is found on the cytoplasmic edge of transmembrane segment 2 (TMS-2), cause a substantial decrease in the maximal velocity of lactose uptake without significantly affecting the K(m) values (Jessen-Marshall, A. E., Parker, N. J., and Brooker, R. J. (1997) J. Bacteriol. 179, 2616-2622). In the current study, mutagenesis was conducted along the face of TMS-2 that contains glycine-64. Single amino acid substitutions that substantially changed side-chain volume at codons 52, 57, 59, 63, and 66 had little or no effect on transport activity, whereas substitutions at codons 49, 53, 56, and 60 were markedly defective and/or had lower levels of expression. According to helical wheel plots, Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64 form a continuous stripe along one face of TMS-2. Several of the TMS-2 mutants (S56Y, S56L, S56Q, Q60A, and Q60V) were used as parental strains to isolate mutants that restore transport activity. These mutations were either first-site mutations or second-site suppressors in TMS-1, TMS-2, TMS-7 or TMS-11. A kinetic analysis showed that the suppressors had a higher rate of lactose transport compared with the corresponding parental strains. Overall, the results of this study are consistent with the notion that a face on TMS-2, containing Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64, plays a critical role in conformational changes associated with lactose transport. We hypothesize that TMS-2 slides across TMS-7 and TMS-11 when the lactose permease interconverts between the C1 and C2 conformations. This idea is discussed within the context of a revised model for the structure of the lactose permease.  相似文献   

5.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. In this study, the Gly-36, Gly-37, Lys-38, Glu-43, Arg-51, Glu-52, Leu-53, Glu-55, and Glu-56 residues of Orf135, which are conserved in the three MutT-type proteins (Orf135, MutT, and MTH1), were substituted, and the enzymatic activity of these mutant proteins was examined. The mutant proteins with a substitution at the 36th, 37th, 52nd, and 56th amino acid residues completely lost their activity. On the other hand, the mutant proteins with a substitution at the 38th, 43rd, 51st, 53rd, and 55th residues could hydrolyze 5-methyl-dCTP. Some mutants with detectable activity for 5-methyl-dCTP did not hydrolyze dCTP. Activities for known substrates (5-methyl-dCTP, dCTP, 2-hydroxy-dATP, and 8-hydroxy-dGTP) were examined in detail with the four mutants, K38R, E43A, L53A, and E55Q. These results indicate the essential residues for the activity of the Orf135 protein.  相似文献   

6.
Polyomavirus T antigens share a common N-terminal sequence that comprises a DnaJ domain. DnaJ domains activate DnaK molecular chaperones. The functions of J domains have primarily been tested by mutation of their conserved HPD residues. Here, we report detailed mutagenesis of the polyomavirus J domain in both large T (63 mutants) and middle T (51 mutants) backgrounds. As expected, some J mutants were defective in binding DnaK (Hsc70); other mutants retained the ability to bind Hsc70 but were defective in stimulating its ATPase activity. Moreover, the J domain behaves differently in large T and middle T. A given mutation was twice as likely to render large T unstable as it was to affect middle T stability. This apparently arose from middle T's ability to bind stabilizing proteins such as protein phosphatase 2A (PP2A), since introduction of a second mutation preventing PP2A binding rendered some middle T J-domain mutants unstable. In large T, the HPD residues are critical for Rb-dependent effects on the host cell. Residues Q32, A33, Y34, H49, M52, and N56 within helix 2 and helix 3 of the large T J domain were also found to be required for Rb-dependent transactivation. Cyclin A promoter assays showed that J domain function also contributes to large T transactivation that is independent of Rb. Single point mutations in middle T were generally without effect. However, residue Q37 is critical for middle T's ability to form active signaling complexes. The Q37A middle T mutant was defective in association with pp60(c-src) and in transformation.  相似文献   

7.
The regioselectivity for progesterone hydroxylation by cytochrome P450 2B1 was re-engineered based on the x-ray crystal structure of cytochrome P450 2C5. 2B1 is a high K(m) progesterone 16alpha-hydroxylase, whereas 2C5 is a low K(m) progesterone 21-hydroxylase. Initially, nine individual 2B1 active-site residues were changed to the corresponding 2C5 residues, and the mutants were purified from an Escherichia coli expression system and assayed for progesterone hydroxylation. At 150 microm progesterone, I114A, F297G, and V363L showed 5-15% of the 21-hydroxylase activity of 2C5, whereas F206V showed high activity for an unknown product and a 13-fold decrease in K(m). Therefore, a quadruple mutant, I114A/F206V/F297G/V363L (Q), was constructed that showed 60% of 2C5 progesterone 21-hydroxylase activity and 57% regioselectivity. Based on their 2C5-like testosterone hydroxylation profiles, S294D and I477F alone and in combination were added to the quadruple mutant. All three mutants showed enhanced regioselectivity (70%) for progesterone 21-hydroxylation, whereas only Q/I477F had a higher k(cat). Finally, the remaining three single mutants, V103I, V367L, and G478V, were added to Q/I477F and Q/S294D/I477F, yielding seven additional multiple mutants. Among these, Q/V103I/S294D/I477F showed the highest k(cat) (3-fold higher than that of 2C5) and 80% regioselectivity for progesterone 21-hydroxylation. Docking of progesterone into a three-dimensional model of this mutant indicated that 21-hydroxylation is favored. In conclusion, a systematic approach to convert P450 regioselectivity across subfamilies suggests that active-site residues are mainly responsible for regioselectivity differences between 2B1 and 2C5 and validates the reliability of 2B1 models based on the crystal structure of 2C5.  相似文献   

8.
Eukaryotic initiation factor 5A (eIF-5A) is ubiquitous in eukaryotes and archaebacteria and is essential for cell proliferation and survival. The crystal structure of the eIF-5A homologue (PhoIF-5A) from a hyperthermophilic archaebacterium Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by the molecular replacement method. PhoIF-5A is predominantly composed of beta-strands comprising two distinct folding domains, an N-domain (residues 1-69) and a C-domain (residues 72-138), connected by a short linker peptide (residues 70-71). The N-domain has an SH3-like barrel, while the C-domain folds in an (oligonucleotide/oligosaccharide binding) OB fold. Comparison of the structure of PhoIF-5A with those of archaeal homologues from Methanococcus jannaschii and Pyrobaculum aerophilum showed that the N-domains could be superimposed with root mean square deviation (rmsd) values of 0.679 and 0.624 A, while the C-domains gave higher values of 1.824 and 1.329 A, respectively. Several lines of evidence suggest that eIF-5A functions as a biomodular protein capable of interacting with protein and nucleic acid. The surface representation of electrostatic potential shows that PhoIF-5A has a concave surface with positively charged residues between the N- and C-domains. In addition, a flexible long hairpin loop, L1 (residues 33-41), with a hypusine modification site is positively charged, protruding from the N-domain. In contrast, the opposite side of the concave surface at the C-domain is mostly negatively charged. These findings led to the speculation that the concave surface and loop L1 at the N-domain may be involved in RNA binding, while the opposite side of the concave surface in the C-domain may be involved in protein interaction.  相似文献   

9.
10.
Perturbation of the human copper-transporter Wilson disease protein (ATP7B) causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the nucleotide-binding subdomain (N-domain), including the most common mutation, H1069Q. To gain insight into the biophysical behavior of the N-domain under normal and disease conditions, we have characterized wild-type and H1069Q recombinant N-domains in vitro and in silico. The mutant has only twofold lower ATP affinity compared to that of the wild-type N-domain. Both proteins unfold in an apparent two-state reaction at 20 °C and ATP stabilizes the folded state. The thermal unfolding reactions are irreversible and, for the same scan rate, the wild-type protein is more resistant to perturbation than the mutant. For both proteins, ATP increases the activation barrier towards thermal denaturation. Molecular dynamics simulations identify specific differences in both ATP orientation and protein structure that can explain the absence of catalytic activity for the mutant N-domain. Taken together, our results provide biophysical characteristics that may be general to N-domains in other P1B-ATPases as well as identify changes that may be responsible for the H1069Q WD phenotype in vivo.  相似文献   

11.
The functional and structural significance of amino acid residues Met(39), Glu(56), Asp(58), Glu(60), and Gly(63) of Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase was explored by the approach of site-directed mutagenesis, initial rate kinetics, fluorescence spectroscopy, and CD spectrometry. Glu(56), Asp(58), Glu(60), and Gly(63) residues are conserved among known primary sequences of the bacterial and fungal enzymes. Kinetic analyses revealed that 240-, 540-, 570-, and 880-fold decreases in k(cat) were observed for the E56D, E60D, D58N, and D58E mutant enzymes, respectively, with a similar substrate affinity relative to the wild type enzyme. In contrast, no detectable enzymatic activity was observed for the E56A, E56Q, D58A, E60A, and E60Q mutants. These results indicated that the carboxyl side chain at positions 56 and 60 is mandatory for enzyme catalysis. M39F, unlike the other mutants, exhibited a 5-fold increase in K(m) value. Lower thermostability was found with the G63A mutant when compared with wild type or other mutant forms of F. succinogenes 1,3-1,4-beta-d-glucanase. Denatured wild type and mutant enzymes were, however, recoverable as active enzymes when 8 m urea was employed as the denaturant. Structural modeling and kinetic studies suggest that Glu(56), Asp(58), and Glu(60) residues apparently play important role(s) in the catalysis of F. succinogenes 1,3-1,4-beta-d-glucanase.  相似文献   

12.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

13.
The Lin12-Notch repeat (LNR) module of about 35 residues is a hallmark of the Notch receptor family. Three copies, arranged in tandem, are invariably present in the extracellular portion of the Notch receptors. Although their function is unknown, genetic and biochemical data indicate that the LNR modules participate in the regulation of ligand-induced proteolytic cleavage of the Notch receptor, a prerequisite to intramembrane cleavage and Notch signaling. Outside the Notch receptor family, the LNR module is present only in the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) and its homologue PAPP-A2, which also contain three copies. Curiously, LNR modules 1 and 2 are present within the proteolytic domain of PAPP-A/A2, but LNR3 is separated from LNR2 by more than 1000 amino acids. The growth factor antagonists insulin-like growth factor-binding protein (IGFBP)-4 and -5 are both substrates of PAPP-A. We provide here evidence that the PAPP-A LNR modules function together to determine the proteolytic specificity of PAPP-A. Analysis of C-terminally truncated PAPP-A mutants followed by the analysis of LNR deletion mutants demonstrated that each of the three PAPP-A LNR modules is strictly required for proteolytic activity against IGFBP-4 but not for proteolytic activity against IGFBP-5. Individual substitution of conserved LNR residues predicted to participate in calcium coordination caused elimination (D341A, D356A, D389A, D1484A, D1499A, and D1502A) or a significant reduction (D359A and E392A) of IGFBP-4 proteolysis, whereas IGFBP-5 proteolysis was unaffected. The activity of the latter mutants against IGFBP-4 could be partially rescued by calcium, and the addition of the calcium-binding protein calbindin D9k to wild-type PAPP-A eliminated activity against IGFBP-4 but not against IGFBP-5, demonstrating that the PAPP-A LNR modules bind calcium ions. We propose a model in which LNR3 is spatially localized in proximity to LNR1 and -2, forming a single functional unit.  相似文献   

14.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

15.
M Tanaka  K Ishimori  I Morishima 《Biochemistry》1999,38(32):10463-10473
To enhance the oxidation activity for luminol in horseradish peroxidase (HRP), we have prepared three HRP mutants by mimicking a possible binding site for luminol in Arthromyces ramosus peroxidase (ARP) which shows 500-fold higher oxidation activity for luminol than native HRP. Spectroscopic studies by (1)H NMR revealed that the chemical shifts of 7-propionate and 8-methyl protons of the heme in cyanide-ligated ARP were deviated upon addition of luminol (4 mM), suggesting that the charged residues, Lys49 and Glu190, which are located near the 7-propionate and 8-methyl groups of the heme, are involved in the specific binding to luminol. The positively charged Lys and negatively charged Glu were introduced into the corresponding positions of Ser35 (S35K) and Gln176 (Q176E) in HRP, respectively, to build the putative binding site for luminol. A double mutant, S35K/Q176E, in which both Ser35 and Gln176 were replaced, was also prepared. Addition of luminol to the HRP mutants induced more pronounced effects on the resonances from the heme substituents and heme environmental residues in the (1)H NMR spectra than that to the wild-type enzyme, indicating that the mutations in this study induced interactions with luminol in the vicinity of the heme. The catalytic efficiencies (V(max)/K(m)) for luminol oxidation of the S35K and S35K/Q176E mutants were 1.5- and 2-fold improved, whereas that of the Q176E mutant was slightly depressed. The increase in luminol activity of the S35K and S35K/Q176E mutants was rather small but significant, suggesting that the electrostatic interactions between the positive charge of Lys35 and the negative charge of luminol can contribute to the effective binding for the luminol oxidation. On the other hand, the negatively charged residue would not be so crucial for the luminol oxidation. The absence of drastic improvement in the luminol activity suggests that introduction of the charged residues into the heme vicinity is not enough to enhance the oxidation activity for luminol as observed for ARP.  相似文献   

16.
Protein L4 from Thermus thermophilus (TthL4) was heterologously overproduced in Escherichia coli cells. To study the implication of the extended loop of TthL4 in the exit-tunnel and peptidyltransferase functions, the highly conserved E56 was replaced by D or Q, while the semiconserved G55 was changed to E or S. Moreover, the sequence -G55E56- was inverted to -E55G56-. When we incorporated these mutants into E. coli ribosomes and investigated their impact on poly(Phe) synthesis, high variations in the synthetic activity and response to erythromycin of the resulting ribosomes were observed. In the absence of erythromycin, ribosomes harboring mutations G55E and E56D in TthL4 protein were characterized by low activity in synthesizing poly(Phe) and decreased capability in binding tRNA at the A site. On the other hand, ribosomes possessing mutations G55E, G55S, G55E-E56G, or E56Q in TthL4 protein were unexpectedly more sensitive to erythromycin. Evidence in support of these findings was drawn by in vivo experiments, assessing the erythromycin sensitivity of E. coli cells expressing wild-type or mutant TthL4 proteins. Our results emphasize the role of the extended loop of L4 ribosomal protein in the exit-tunnel and peptidyltransferase center functions.  相似文献   

17.
18.
Sudo T  Hidaka H 《FEBS letters》1999,444(1):11-14
Residues in annexin XI-A essential for binding of calcyclin (S100A6) were examined by site-directed mutagenesis. GST fusion proteins with the calcyclin binding site of annexin XI-A, GST-AXI 34-62 and GST-AXI 49-77 bound to calcyclin-Sepharose Ca2+-dependently. The mutants GST-AXI L52E, M55E, A56E and M59E lost the binding ability, whereas GST-AXI A57E retained the ability. These results demonstrate that the hydrophobic residues L52, M55, A56 and M59 on one side surface of the alpha-helix are critical for the binding. Assays with GST fusion proteins and synthesized peptides corresponding to the calcyclin binding site indicated that other regions around the calcyclin binding site are important to stabilize the conformation.  相似文献   

19.
Fogle EJ  Liu W  Woon ST  Keller JW  Toney MD 《Biochemistry》2005,44(50):16392-16404
Dialkylglycine decarboxylase (DGD) is a pyridoxal phosphate dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. DGD uses stereoelectronic effects to control its unusual reaction specificity. X-ray crystallographic structures of DGD suggest that Q52 is important in maintaining the substrate carboxylate in a stereoelectronically activated position. Here, the X-ray structures of the Q52A mutant and the wild type (WT) DGD-PMP enzymes are presented, as is the analysis of steady-state and half-reaction kinetics of three Q52 mutants (Q52A, Q52I, and Q52E). As expected if stereoelectronic effects are important to catalysis, the steady-state rate of decarboxylation for all three mutants has decreased significantly compared to that of WT. Q52A exhibits an approximately 85-fold decrease in k(cat) relative to that of WT. The rate of the decarboxylation half-reaction decreases approximately 10(5)-fold in Q52I and approximately 10(4)-fold in Q52E compared to that of WT. Transamination half-reaction kinetics show that Q52A and Q52I have greatly reduced rates compared to that of WT and are seriously impaired in pyridoxamine phosphate (PMP) binding, with K(PMP) at least 50-100-fold greater than that of WT. The larger effect on the rate of l-alanine transamination than of pyruvate transamination in these mutants suggests that the rate decrease is the result of selective destabilization of the PMP form of the enzyme in these mutants. Q52E exhibits near-WT rates for transamination of both pyruvate and l-alanine. Substrate binding has been greatly weakened in Q52E with apparent dissociation constants at least 100-fold greater than that of WT. The rate of decarboxylation in Q52E allows the energetic contribution of stereoelectronic effects, DeltaG(stereoelectronic), to be estimated to be -7.3 kcal/mol for DGD.  相似文献   

20.
A thermostable glucose dehydrogenase (GlcDH) mutant of Bacillus megaterium IWG3 harboring the Q252L substitution (Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264:6381-6385, 1989) is stable at pH values above 9, but only in the presence of 2 M NaCl. Another GlcDH mutant exhibiting increased stability at an alkaline pH in the absence of NaCl has been isolated previously (S.-H. Baik, T. Ide, H. Yoshida, O. Kagami, and S. Harayama, Appl. Microbiol. Biotechnol. 61:329-335, 2003). This mutant had two amino acid substitutions, Q252L and E170K. In the present study, we characterized three GlcDH mutants harboring the substitutions Q252L, E170K, and Q252L/E170K under low-salt conditions. The GlcDH mutant harboring two substitutions, Q252L/E170K, was stable, but mutants harboring a single substitution, either Q252L or E170K, were unstable at an alkaline pH. Gel filtration chromatography analyses demonstrated that the oligomeric state of the Q252/E170K enzyme was stable, while the tetramers of the enzymes harboring a single substitution (Q252L or E170K) dissociated into dimers at an alkaline pH. These results indicated that the Q252L and E170K substitutions synergistically strengthened the interaction at the dimer-dimer interface. The crystal structure of the E170K/Q252L mutant, determined at 2.0-Å resolution, showed that residues 170 and 252 are located in a hydrophobic cavity at the subunit-subunit interface. We concluded that these residues in the wild-type enzyme have thermodynamically unfavorable effects, while the Q252L and E170K substitutions increase the subunit-subunit interactions by stabilizing the hydrophobic cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号