首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding an extracellular protease, sptA, was cloned from the halophilic archaeon Natrinema sp. J7. It encoded a polypeptide of 565 amino acids containing a putative 49-amino acid signal peptide, a 103-amino acid propeptide, as well as a mature region and C-terminal extension, with a high proportion of acidic amino acid residues. The sptA gene was expressed in Haloferax volcanii WFD11, and the recombinant enzyme could be secreted into the medium as an active mature form. The N-terminal amino acid sequencing and MALDI-TOF mass spectrometry analysis of the purified SptA protease indicated that the 152-amino acid prepropeptide was cleaved and the C-terminal extension was not processed after secretion. The SptA protease was optimally active at 50°C in 2.5 M NaCl at pH 8.0. The NaCl removed enzyme retained 20% of its activity, and 60% of the activity could be restored by reintroducing 2.5 M NaCl into the NaCl removed enzyme. When the twin-arginine motif in the signal peptide of SptA protease was replaced with a twin-lysine motif, the enzyme was not exported from Hfx. volcanii WFD11, suggesting that the SptA protease was a Tat-dependent substrate.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

3.
Protease Re, a new cytoplasmic endoprotease in Escherichia coli, was purified to homogeneity by conventional procedures, using [3H]casein as the substrate. The enzyme consists of a single polypeptide of 82,000 molecular weight. It is maximally active between pH 7 and 8.5 and is independent of ATP. It has a pI of 6.8 and a Km of 10.8 microM for casein. Since diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride inhibited this enzyme, it appears to be a serine protease. Protease Re was sensitive to inhibition by L-1-tosylamido-2-phenylethylchloromethylketone but not to that by 1-chloro-3-tosylamido-7-aminoheptanone, thiol-blocking reagents, chelating agents, or various peptide aldehydes. Re also degraded [125I]globin, [125I]glucagon, and 125I-labeled denatured bovine serum albumin to acid-soluble products (generally oligopeptides of greater than 1,500 daltons), but it showed no activity against serum albumin, growth hormone, insulin, or a variety of fluorometric peptide substrates. It also hydrolyzed oxidatively inactivated glutamine synthetase (generated by ascorbate, oxygen, and iron) four- to fivefold more rapidly than the native protein. Protease Re appears to be identical to the proteolytic enzyme isolated by Roseman and Levine (J. Biol. Chem. 262:2101-2110, 1987) by its ability to degrade selectively oxidatively damaged glutamine synthetase in vivo. Its role in intracellular protein breakdown is uncertain.  相似文献   

4.
The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) is involved in the processing of the viral polyprotein and, thereby, contributes to the biogenesis of the virus replication complex. Structural bioinformatics has revealed a relationship for the SARS-CoV PLpro to herpesvirus-associated ubiquitin-specific protease (HAUSP), a ubiquitin-specific protease, indicating potential deubiquitinating activity in addition to its function in polyprotein processing (T. Sulea, H. A. Lindner, E. O. Purisima, and R. Menard, J. Virol. 79:4550-4551, 2005). In order to confirm this prediction, we overexpressed and purified SARS-CoV PLpro (amino acids [aa]1507 to 1858) from Escherichia coli. The purified enzyme hydrolyzed ubiquitin-7-amino-4-methylcoumarin (Ub-AMC), a general deubiquitinating enzyme substrate, with a catalytic efficiency of 13,100 M(-1)s(-1), 220-fold more efficiently than the small synthetic peptide substrate Z-LRGG-AMC, which incorporates the C-terminal four residues of ubiquitin. In addition, SARS-CoV PLpro was inhibited by the specific deubiquitinating enzyme inhibitor ubiquitin aldehyde, with an inhibition constant of 210 nM. The purified SARS-CoV PLpro disassembles branched polyubiquitin chains with lengths of two to seven (Ub2-7) or four (Ub4) units, which involves isopeptide bond cleavage. SARS-CoV PLpro processing activity was also detected against a protein fused to the C terminus of the ubiquitin-like modifier ISG15, both in vitro using the purified enzyme and in HeLa cells by coexpression with SARS-CoV PLpro (aa 1198 to 2009). These results clearly establish that SARS-CoV PLpro is a deubiquitinating enzyme, thereby confirming our earlier prediction. This unexpected activity for a coronavirus papain-like protease suggests a novel viral strategy to modulate the host cell ubiquitination machinery to its advantage.  相似文献   

5.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

6.
A protease was purified 163-fold from Pronase, a commercial product from culture filtrate of Streptomyces griseus, by a series of column chromatographies on CM-Toyopearl (Fractogel), Sephadex G-50, hydroxyapatite, and Z-Gly-D-Phe-AH-Sepharose 4B using Boc-Ala-Ala-Pro-Glu-pNA as a substrate. The final preparation was homogeneous by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and gel isoelectric focusing. Studies on the substrate specificity with peptide p-nitroanilides revealed that this protease preferentially hydrolyzed peptide bonds on the carbonyl-terminal side of either glutamic acid or aspartic acid. It was most active at pH 8.8 for the hydrolysis of Boc-Ala-Ala-Pro-Glu-pNA. The molecular weight of the protease was estimated to be 20,000 by gel filtration on Sepharose 6B using 6 M guanidine hydrochloride as an eluent, and 22,000 by SDS-PAGE in the presence of 2-mercaptoethanol. The isoelectric point of the enzyme was 8.4. The enzyme was inactivated by diisopropyl phosphofluoridate (DFP) but not by p-chloromercuribenzoate (PCMB) or EDTA.  相似文献   

7.
During export of the outer membrane lipoprotein across the cytoplasmic membrane, the signal peptide of the lipoprotein undergoes two successive proteolytic attacks, cleavage of the signal peptide by signal peptidase and digestion of the cleaved signal peptide by an enzyme called signal peptide peptidase(s) (Hussain, M., Ichihara, S., and Mizushima, S. (1982) J. Biol. Chem. 257, 5177-5182; Hussain, M., Ozawa, Y., Ichihara, S., and Mizushima, S. (1982) Eur. J. Biochem. 129, 233-239). Here we report that protease IV, a cytoplasmic membrane protease, exhibits the signal peptide peptidase activity. The signal peptide peptidase activity was cofractionated with protease IV throughout the entire process of purification of the latter enzyme. Only the signal peptide was digested by the peptidase among membrane proteins. Both the signal peptide peptidase activity and the protease IV activity were inhibited to similar degrees by antipain, leupeptin, chymostatin, and elastatinal that are known to inhibit the signal peptide peptidase activity in the cell envelope. From these results we conclude that protease IV is the signal peptide peptidase that is responsible for signal peptide digestion in the cytoplasmic membrane. The peptidase attacked the signal peptide only after its release from the precursor protein.  相似文献   

8.
Affinity purification of the HIV-1 protease   总被引:5,自引:0,他引:5  
An inhibitor of the HIV-1 protease has been employed in the generation of a resin which allows the rapid purification of this enzyme. A peptide substrate analogue, H2N-Ser-Gln-Asn-(Phe-psi[CH2N]-Pro)-Ile-Val-Gln-OH, was coupled to agarose resin. The HIV-1 protease was expressed in E. coli and the supernatant from lysed cells was passed through the affinity resin. Active HIV-1 protease was then eluted with a buffer change to pH 10 and 2 M NaCl. Final purification to a homogeneous preparation, capable of crystallization, was achieved with hydrophobic interaction chromatography. Solutions containing HIV-1 protease bound to competitive inhibitors do not bind to the column.  相似文献   

9.
Effects of dimethyl sulfoxide (DMSO), temperature, and sodium chloride on the matrilysin-catalyzed hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2, 4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR] were examined. DMSO inhibited the matrilysin activity competitively with the inhibitor constant (K(i)) of 0. 59+/-0.04 M, and the binding between them was endothermic and entropy-driven. The binding of matrilysin with MOCAc-PLGL(Dpa)AR was also found to be entropy-driven. The matrilysin activity was increased in a biphasic exponential fashion with increasing concentration of NaCl, and was 5.3 times higher in the presence of 4 M NaCl than that in its absence. The first and second phases were separated at 0.5 M NaCl, and the activation at x M NaCl compared with the activity in the absence of NaCl was expressed as 2.1(x) at [NaCl] < 0.5 M and 1.4(x) at [NaCl] > 0.5 M. The activation was brought about solely through a decrease in the Michaelis constant (K(m)), and the catalytic constant (k(cat)) was not much altered. This suggests that the decrease in the electrostatic interaction and the increase in the hydrophobic interaction between matrilysin and the substrate might enhance the enzyme activity by reducing the K(m) value.  相似文献   

10.
Protease La is an ATP-dependent protease that catalyzes the rapid degradation of abnormal proteins and certain normal polypeptides in Escherichia coli. In order to learn more about its specificity and the role of ATP, we tested whether small fluorogenic peptides might serve as substrates. In the presence of ATP and Mg2+, protease La hydrolyzes two oligopeptides that are also substrates for chymotrypsin, glutaryl-Ala-Ala-Phe-methoxynaphthylamine (MNA) and succinyl-Phe-Leu-Phe-MNA. Methylation or removal of the acidic blocking group prevented hydrolysis. Closely related peptides (glutaryl-Gly-Gly-Phe-MNA and glutaryl-Ala-Ala-Ala-MNA) are cleaved only slightly, and substrates of trypsin-like proteases are not hydrolyzed. Furthermore, several peptide chloromethyl ketone derivatives that inhibit chymotrypsin and cathepsin G (especially benzyloxycarbonyl-Gly-Leu-Phe-chloro-methyl ketone), inhibited protease La. Thus its active site prefers peptides containing large hydrophobic residues, and amino acids beyond the cleavage site influence rates of hydrolysis. Peptide hydrolysis resembles protein breakdown by protease La in many respects: 1) ADP inhibits this process rapidly, 2) DNA stimulates it, 3) heparin, diisopropyl fluorophosphate, and benzoyl-Arg-Gly-Phe-Phe-Leu-MNA inhibit hydrolysis, 4) the reaction is maximal at pH 9.0-9.5, 5) the protein purified from lon- E. coli or Salmonella typhymurium showed no activity against the peptide, and that from lonR9 inhibited peptide hydrolysis by the wild-type enzyme. With partially purified enzyme, peptide hydrolysis was completely dependent on ATP. The pure protease hydrolyzed the peptide slowly when only Mg2+, Ca2+, or Mn2+ were present, and ATP enhanced this activity 6-15-fold (Km = 3 microM). Since these peptides cannot undergo phosphorylation, adenylylation, modification of amino groups, or denaturation, these mechanisms cannot account for the stimulation by ATP. Most likely, ATP and Mg2+ affect the conformation of the enzyme, rather than that of the substrate.  相似文献   

11.
6-Hydroxybenzofuran and phenylhydrazine are mechanism-based inhibitors of dopamine beta-hydroxylase (D beta H; EC 1.14.17.1). We report here the isolation and characterization of radiolabeled peptides obtained after inactivation of D beta H with [3H]6-hydroxybenzofuran and [14C]phenylhydrazine followed by digestion with Staphylococcus aureus V8 protease. Inactivation of D beta H with [3H]6-hydroxybenzofuran gave only one labeled peptide, whereas inactivation with [14C]phenylhydrazine gave several labeled peptides. Each inhibitor labeled a unique tyrosine in the enzyme corresponding to Tyr477 in the primary sequence of the bovine enzyme (Robertson, J. G., Desai, P. R., Kumar, A., Farrington, G. K., Fitzpatrick, P. F., and Villafranca, J. J. (1990) J. Biol. Chem. 265, 1029-1035). In addition, [14C]phenylhydrazine also labeled a unique histidine (His249) as well as several other peptides. Examination of the complete peptide profile obtained by high pressure liquid chromatography analysis also revealed the presence of a modified but nonradioactive peptide. This peptide was isolated and sequenced and was identical whether the enzyme was inactivated by 6-hydroxybenzofuran or phenylhydrazine. An arginine at position 503 was missing from the sequence cycle performed by Edman degradation of the modified peptide, but arginine was present in the identical peptide isolated from native dopamine beta-hydroxylase. These data are analyzed based on an inactivation mechanism involving formation of enzyme bound radicals (Fitzpatrick, P. F., and Villafranca, J. J. (1986) J. Biol. Chem. 261, 4510-4518) interacting with active site amino acids that may have a role in substrate binding and binding of the copper ions at the active site.  相似文献   

12.
A human pituitary-derived serine protease, immunologically identical to human lung tryptase (Smith, T. J., Hougland, M.W., and Johnson, D.A. (1984) J. Biol. Chem. 259, 11046-11051), was found immunohistochemically to be associated with mast cells present in pituitary connective tissue. Western blotting combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of multiple forms: a major Mr 36,300 form and three minor forms with Mr 32,400, 33,400, and 34,600. Two major forms with Mr 35,600 and 34,100 were detected by affinity labeling with 125I-D-Tyr-Glu-Phe-Lys-Arg-CH2Cl. Treatment of the pituitary tryptase preparation with N-glycosidase F indicated that some of the molecular weight heterogeneity results from N-linked glycosylation. The multiple molecular weight forms appear to have the same NH2-terminal sequence: Ile-Val-Gly-Gly-Gln-Glu-Ala-Pro. Pituitary tryptase has an apparent Mr = 110,000 by gel filtration on Sephadex G-200 in the presence of 0.3 M NaCl, indicating that the enzyme may be a tetramer of Mr = 32,400-36,300 subunits. However, this quaternary structure was not stable to gradient polyacrylamide gel electrophoresis. Human pituitary tryptase was so reactive toward synthetic tripeptide coumarin-containing substrates containing a pair of basic amino acids at the site of cleavage such as benzyloxylcarbonyl-L-Ala-L-Lys-L-Arg-4-methylcoumarin-7-amide (k cat/Km = 2.38 X 10(8) M-1 s-1) that Briggs-Haldane kinetics may apply. The reversible inhibitor NaCl at a concentration of 1 M decreased the k cat/Km for benzyloxylcarbonyl-L-Ala-L-Lys-L-Arg-4-methylcoumarin-7-amide to 6.53 X 10(6) M-1 s-1, which reflected a 100-fold increase in apparent Km. Based on active site titration with fluorescein mono-p-guanidinobenzoate hydrochloride, NaCl had no effect on the number of accessible active sites. Substrate specificity studies with prohormones indicated that pituitary tryptase has a preference for cleaving COOH-terminal to arginine or lysine residues which are preceded by a proline residue 4 or 6 residues NH2-terminal to the site of cleavage.  相似文献   

13.
A protease was extracted with 1 M NaCl from spinach ( Spinacia oleracea L.) photosystem II (PSII) particles and purified through gel filtration and anion-exchange chromatography. SDS-polyacrylamide gel electrophoresis of the protease revealed a polypeptide with a molecular mass of 43 kDa. The activity of the purified protease was assayed using a 24 kDa water-soluble protein as substrate, visualized through SDS-PAGE. The protease even remained active in the presence of 0.1 and 0.2 M NaCl, although the degradation pattern changed, which indicated that the protease was different from that reported earlier by another group. The presence of 0.3 M NaCl was shown to be inhibitory. The protease was inhibited by 1,10-phenanthroline and EGTA-NaOH (pH 7.0), indicating that the metal ions are essential for activity and that the enzyme is a metal-protease. FTIR spectroscopy was used to examine the conformationally sensitive amide I' bands of the protease. The protease was observed to undergo spectroscopic changes that reflect the conformational changes that take place when Ca2+ is bound, which further confirms that the protease is a metal-protease.  相似文献   

14.
The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. Effect of various temperatures, initial pH, salt and different nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0–8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was purified 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0–10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These findings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.  相似文献   

15.
A compartmental model developed by Hensley (Hensley, P., Nardone, G., Chirikjian, J.G., and Wastney, M. E., (1990) J. Biol. Chem. 265, 15300-15307) for analysis of the time courses of the cleavage of superhelical DNA substrates by the restriction endonuclease, BamHI, has been used to quantify the effects of changes in temperature, ionic strength, superhelical density, and the DNA substrate on the binding and strand cleavage processes. Studies reported here indicate that changes in topology may be introduced into the DNA substrate solely as a result of the plasmid preparation process and in the absence of covalent bond cleavage and ligation. These changes in topology have qualitatively different effects on the kinetics than those promoted by changes in the superhelical density. The former are removed by briefly warming the DNA prior to assay, suggesting that they are only kinetically stable, while the latter changes are not affected by heating. Increasing the [NaCl] from 0.01 M to 0.1 M increases the overall rate of plasmid cleavage by increasing both the rates of cleavage and enzyme DNA association. To describe the decrease in the overall cleavage rate observed in 0.15 M NaCl, an ionic strength-dependent rate-determining structural transition in the DNA substrate was incorporated into the model. The largest changes in the rate of the cleavage process resulted from changes in the DNA substrate. For the SV40 substrate compared to pBR322, the rate constants describing the two association processes and the first bond cleavage event were increased 6- to 7-fold. The rate of the second bond cleavage process was not affected. These changes may be due to differences in the flanking sequences.  相似文献   

16.
Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon N. magadii that exhibits optimal activity and stability in salt-saturated solutions. In this work, the effect of salt on the function and structure of Nep was investigated. In absence of salt, Nep became unfolded and aggregated, leading to the loss of activity. The enzyme did not recover its structural and functional properties even after restoring the ideal conditions for catalysis. At salt concentrations higher than 1 M (NaCl), Nep behaved as monomers in solution and its enzymatic activity displayed a nonlinear concave-up dependence with salt concentration resulting in a 20-fold activation at 4 M NaCl. Although transition from a high to a low-saline environment (3–1 M NaCl) did not affect its secondary structure contents, it diminished the enzyme stability and provoked large structural rearrangements, changing from an elongated shape at 3 M NaCl to a compact conformational state at 1 M NaCl. The thermodynamic analysis of peptide hydrolysis by Nep suggests a significant enzyme reorganization depending on the environmental salinity, which supports in solution SAXS and DLS studies. Moreover, solvent kinetic isotopic effect (SKIE) data indicates the general acid-base mechanism as the rate-limiting step for Nep catalysis, like classical serine-peptidases. All these data correlate the Nep conformational states with the enzymatic behavior providing a further understanding on the stability and structural determinants for the functioning of halolysins under different salinities.  相似文献   

17.
The complete sequence of the gene encoding the major cysteine protease from Trypanosoma cruzi is reported. The amino acid sequence predicted from the gene sequence aligns well with members of the papain family of cysteine proteases, suggesting the name cruzain. The sequence is most closely related to the cysteine protease of Trypanosoma brucei (59.3%) and the murine cathepsin L (42.2%). At least six copies of the gene are present in the genome and are organized in a tandem array of copies which are identical in all restriction endonuclease sites tested. The gene appears to be expressed in all developmental stages of T. cruzi with mRNA levels approximately 2-fold higher in the intracellular amastigote form. A copy of the T. cruzi gene was expressed in bacteria as an inactive, insoluble fusion polypeptide to approximately 5% of the total cell protein. The fusion protein was readily purified, solubilized in urea, and successfully refolded to produce a polyprotein which processed autocatalytically to yield approximately 1 mg of active protease per 3 g of wet cell paste. The processed form of the recombinant protease has an NH2-terminal sequence identical to that of the mature form of the protease purified from T. cruzi (Murta, A. C. M., Persechini, P. M., Souto-Padrón, T., de Souza, W., Guimaraes, J. A., and Scharfstein, J. (1990) Mol. Biochem. Parasitol. 43, 27-38; Cazzulo, J. J., Couso, R., Raimondi, A., Wernstedt, C., and Hellman, U. (1989) Mol. Biochem. Parasitol. 33, 33-42). This suggests that the recombinant protease possesses the requisite specificity and activity to correctly process the proform of the protease in vitro. Kinetic assays with peptide substrates demonstrate that the substrate specificity and kinetic parameters for the recombinant protease are consistent with those of the endogenous protease. The proteolytic activity of the recombinant protease is enhanced by dithiothreitol, inhibited by leupeptin, N alpha-p-tosyl-L-lysine chloromethyl ketone and trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64) but is unaffected by phenylmethylsulfonyl fluoride, pepstatin, and 1,10-phenanthroline. More specifically, the recombinant enzyme was inhibited by benzyloxycarbonyl-Phe-Arg-fluoromethyl ketone, which inhibits replication and differentiation of T. cruzi within mammalian cells in culture.  相似文献   

18.
Picornaviruses produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornain-2A and -3C. Picornain-3C has characteristics of both the serine peptidase chymotrypsin and the cysteine peptidase papain in that the 3D structure resembles chymotrypsin, but its nucleophile is a cysteine SH rather than a serine OH group. We investigated the specificity of poliovirus picornain-3C (PV3C) protease and the influence of kosmotropic salts on catalytic activity, using FRET peptides related to a cleavable segment of the virus polyprotein. The peptidase activity of PV3C was found to be 100-fold higher in the presence of 1.5 M sodium citrate. This activation was anion-dependent, following the Hofmeister series citrate(3-) > SO4(2-) > HPO4(2-) > acetate- > HCO3(-) > Cl-. The activation appeared to be independent of substrate sequence and arose primarily from an increase in kcat. A shift to higher pH was also observed for the pK1 of the enzyme pH-activity profile. Experiments with the fluorescent probe ANS (1-anilino-8-naphthalene sulfonate) showed that the protease bound the dye in the presence of 1 M sodium citrate but not in its absence or in the presence of 1 M NaCl. Structural changes in PV3C protease were detected using circular dichroism and the thermodynamic data indicated a more organized active site in the presence of sodium citrate. PV3C protease was also activated in D2O, which was added to the activation by citrate. These effects seem to be related to nonspecific interactions between the solvent and the protein. Our data show that the catalytic efficiency of PV3C protease is modulated by the composition of the environment and that this modulation may play a role in the optimal processing of polyprotein for the virus assembly that occurs inside specific vesicles formed in poliovirus-infected cells.  相似文献   

19.
Ornithine decarboxylase (ODC) was purified about 2,000-fold from the kidney of androgen-treated mice and its molecular properties were examined and compared with those of the enzyme from rat liver. The purified enzyme showed two protein staining bands on SDS-polyacrylamide gel electrophoresis, corresponding to Mr of about 54,000 and 52,000. The apparent Mr of the enzyme determined by gel filtration was 57,000 in the presence of 0.25 M NaCl and 110,000 in its absence. The apparent Km value for L-ornithine was about 0.1 mM in the absence of NaCl and 0.7 mM in the presence of 0.25 M NaCl. Thus, salts appeared to cause subunit dissociation and also an increase in the Km value for the substrate. Putrescine and D-ornithine acted as inhibitors competing with the substrate. Antizyme from the rat liver inhibited the activities of the mouse enzyme and the rat enzyme similarly. The mouse and the rat enzymes exhibited a very similar immunological cross-reactivity to rabbit antibody raised against the mouse enzyme but, when the antibody directed against the rat enzyme was used, the cross-reactivity of the rat enzyme was higher than that of the mouse enzyme. Thus, the molecular properties of mouse ODC were very similar to those of the rat enzyme.  相似文献   

20.
Hormonal regulation of L-serine dehydratase [L-serine hydro-lyase (deaminating), EC 4.2.1.13] was studied in primary cultures of adult-rat hepatocytes. The hepatocytes were isolated by collagenase perfusion and maintained in culture on collagen-gel/nylon-mesh substrata. L-Serine dehydratase activity was measured with [14C]threonine as substrate. The enzyme activity in hepatocytes of normal adult rats was low and declined rapidly in culture in L-15 medium containing 0.1 micro M-insulin and even more in the presence of glucose. L-Serine dehydratase activity in hepatocytes of rats with streptozotocin-induced diabetes was initially 20-fold higher than that of normal rats, but fell rapidly to a low value by 4 days in culture. Hormonal regulation of the enzyme activity was manifested by treatment of the cultured hepatocytes with insulin (0.1 micro M), glucagon (0.3 micro M), dexamethasone (10 micro M) and combinations of these hormones. Either glucagon or dexamethasone in the absence of insulin enhanced the activity of L-serine dehydratase, but failed to do so in the presence of insulin. Treatment with both hormones resulted in a 2-3-fold increase in enzyme activity in culture on days 3 and 4. Under conditions in which the enzyme activity was enhanced, glucose production by the cultured hepatocytes was concomitantly increased. Glucose production resulted in part from gluconeogenesis from pyruvate and not entirely from glycogenolysis. The gluconeogenic conditions of culture resulted in a decrease in cellular lipids in the cultured hepatocytes, as evidenced by ultrastructural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号