首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

2.
p38 mitogen-activated protein kinase is activated and involved in cleavage of caspase-3 during apoptosis induced by a number of stimuli. However, the signaling events triggered by p38 that result in caspase-3 activation are still unknown. In human leukemia cells, two reactive oxygen species, singlet oxygen and hydrogen peroxide (H(2)O(2)), selectively stimulated the phosphorylation of p38. Preincubation of cells with SB203580, a specific inhibitor of p38, dose dependently inhibited DNA fragmentation induced by singlet oxygen but not by H(2)O(2). Protection from apoptosis by SB203580 correlated with inhibition of caspase-3, and several events that are associated with caspase-3 activation, including Bid cleavage, decrease in mitochondrial transmembrane potential and release of cytochrome c from mitochondria, whereas caspase-8 cleavage was not affected by this inhibitor. In contrast, blockade of caspase-8 with Ile-Glu-Thr-Asp-fluoromethyl ketone is sufficient to prevent formation of DNA fragments and to inhibit all the above signaling events, with exception of p38 phosphorylation, in both singlet oxygen- and H(2)O(2)-treated cells. These data suggest that caspase-3 activation is regulated through redundant signaling pathways that involve p38 and caspase-8 acting upstream of Bid during singlet oxygen-induced apoptosis, whereas the activation of caspase-3 by H(2)O(2) is only governed by a caspase-8-mediated apoptotic pathway.  相似文献   

3.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

4.
We investigated the signaling pathways underlying nano-TiO2-induced apoptosis in cultured human lymphocytes. Nano-TiO2 increased the proportion of sub-G1 cells, activated caspase-9 and caspase-3, and induced caspase-3-mediated PARP cleavage. Nano-TiO2 also induced loss of mitochondrial membrane potential, which suggests that nano-TiO2 induces apoptosis via a mitochondrial pathway. A time-sequence analysis of the induction of apoptosis by nano-TiO2 revealed that nano-TiO2 triggered apoptosis through caspase-8/Bid activation. We also observed that inhibition of caspase-8 by z-IETD-fmk suppressed the caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and apoptosis. Nano-TiO2 activated two MAPKs, p38 and JNK. In addition, the selective p38 inhibitor SB203580 and selective JNK inhibitor SP600125 suppressed nano-TiO2-induced apoptosis and caspase-8 activation to moderate and significant extents, respectively. Knockdown of protein levels of JNK1 and p38 using an RNA interference technique also suppressed caspase-8 activation. Our results suggest that nano-TiO2-induced apoptosis is mediated by the p38/JNK pathway and the caspase-8-dependent Bid pathway in human lymphocytes.  相似文献   

5.
Recently, caspase-2 was shown to act upstream of mitochondria in stress-induced apoptosis. Activation of caspase-8, a key event in death receptor-mediated apoptosis, also has been demonstrated in death receptor-independent apoptosis. The regulation of these initiator caspases, which trigger the mitochondrial apoptotic pathway, is unclear. Here we report a potential regulatory role of caspase-2 on caspase-8 during ceramide-induced apoptosis. Our results demonstrate the sequential events of initiator caspase-2 and caspase-8 activation, Bid cleavage and translocation, and mitochondrial damage followed by downstream caspase-9 and -3 activation and cell apoptosis after ceramide induction in T cell lines. The expression of truncated Bid (tBid) and the reduction in mitochondrial transmembrane potential were blocked by caspase-2 or caspase-8, but not caspase-3, knockdown using an RNA interference technique. Ceramide-induced caspase-8 activation, mitochondrial damage, and apoptosis were blocked in caspase-2 short interfering RNA-expressing cells. Therefore, caspase-2 acts upstream of caspase-8 during ceramide-induced mitochondrial apoptosis. Similarly, sequential caspase-2 and caspase-8 activation upstream of mitochondria was also observed in etoposide-induced apoptosis. These data suggest sequential initiator caspase-2 and caspase-8 activation in the mitochondrial apoptotic pathway induced by ceramide or etoposide.  相似文献   

6.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

7.
8.
In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis.  相似文献   

9.
A20 was originally characterized as a TNF-inducible gene in human umbilical vein endothelial cells. As an NF-kappaB target gene, A20 is also induced in many other cell types by a wide range of stimuli. Expression of A20 has been shown to protect from TNF-induced apoptosis and also functions via a negative-feedback loop to block NF-kappaB activation induced by TNF and other stimuli. To date, there are no reports on whether A20 can protect OxLDL-induced apoptosis in macrophages. For the first time we report that A20 expression blocks OxLDL-mediated cell toxicity and apoptosis. OxLDL induced the expression of Fas and FasL, and the subsequent caspase-8 cleavage and treatment with a neutralizing ZB4 anti-Fas antibody blocked apoptosis induced by OxLDL. Expression of dominant negative FADD efficiently prevented OxLDL-induced apoptosis and caspase-8 activation. A20 expression significantly attenuated the increased expression of Fas and FasL, and Fas-mediated apoptosis. These findings suggest that A20-mediated protection from OxLDL may occur at the level of Fas/FADD-caspase-8 and be FasL dependent. Treatment of RAW264.7 cells with OxLDL induces a series of time-dependent events, including the release of cytochrome c, Smac and Omi from the mitochondria to the cytosol, activation of caspase-9, -6, -2, and -3, which are blocked by A20 expression. No cleaved form of Bid was detected, even treatment with OxLDL for 48 h. Expression of dominant negative FADD also efficiently prevented OxLDL-induced the above apoptotic events. The release of cyto c, Smac and Omi from mitochondria to cytosol, activated by OxLDL treatment, and the activation of caspase-9 may not be a downstream event of caspase-8-mediated Bid cleavage. Therefore, the protective effect of A20 on mitochondrial apoptotic pathway activated by OxLDL may be dependent on FADD. A20 expression reversed OxLDL-mediated G(0)/G(1) stage arrest by maintaining the expression of cyclin B1, cyclin D1, and cyclin E, and p21 and p73. Thus, A20 expression blocks OxLDL-mediated apoptosis in murine RAW264.7 macrophages through disrupting Fas/FasL-dependent activation of caspase-8 and the mitochondria pathway.  相似文献   

10.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

11.
12.
Activation of initiator and effector caspases and Bid cleavage are apoptotic characteristic features. They are associated with cell alkalization or acidification in some models of apoptosis. The alteration of culture conditions such as extracellular pH value and the overexpression of Bid plasmids may induce cell apoptosis. In present report, we used fluorescence confocal imaging and fluorescence resonance energy transfer (FRET) techniques based on green fluorescent proteins (GFPs) to monitor the spatio-temporal dynamics of Bid translocation and caspase-3 activation in real time in living human lung adenocarcinoma (ASTC-a-1) cells under neutral (pH 7.4) and alkaline (pH 8.0) conditions. The cells transfected with Bid-CFP plasmid did not show apoptotic characteristics for 96 hours under an atmosphere of 95% air, 5% CO(2) at pH 7.4 and 37 degrees C, implying that the overexpression of Bid-CFP plasmid does not induce cell apoptosis. However, all the cells underwent apoptosis after being placed in the alkaline culture (pH 8.0). The dynamic results in single living cell showed that the alkaline condition at pH of 8.0 induced Bid cleavage and tBid translocation to mitochondria at about 1.5 hour, and then induced the caspase-3 activation and cell apoptosis. These results show that the alkaline sondition (pH=8.0) induces cell apoptosis by activating caspase-8, which cleaves Bid to tBid, tBid translocation to mitochondria, and then activating the caspase-3 in the ASTC-a-1 cells.  相似文献   

13.
The host innate immune response to viral infections often involves the activation of parallel pattern recognition receptor (PRR) pathways that converge on the induction of type I interferons (IFNs). Several viruses have evolved sophisticated mechanisms to attenuate antiviral host signaling by directly interfering with the activation and/or downstream signaling events associated with PRR signal propagation. Here we show that the 3C(pro) cysteine protease of coxsackievirus B3 (CVB3) cleaves the innate immune adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) as a mechanism to escape host immunity. We found that MAVS and TRIF were cleaved in CVB3-infected cells in culture. CVB3-induced cleavage of MAVS and TRIF required the cysteine protease activity of 3C(pro), occurred at specific sites and within specialized domains of each molecule, and inhibited both the type I IFN and apoptotic signaling downstream of these adaptors. 3C(pro)-mediated MAVS cleavage occurred within its proline-rich region, led to its relocalization from the mitochondrial membrane, and ablated its downstream signaling. We further show that 3C(pro) cleaves both the N- and C-terminal domains of TRIF and localizes with TRIF to signalosome complexes within the cytoplasm. Taken together, these data show that CVB3 has evolved a mechanism to suppress host antiviral signal propagation by directly cleaving two key adaptor molecules associated with innate immune recognition.  相似文献   

14.
This study was aimed to evaluate the apoptotic effects of thiosulfinates purified from Allium tuberosum L. on PC-3 human prostate cancer cells, and to elucidate detailed apoptosis mechanisms. Thiosulfinates significantly decrease viable cell numbers in dose- and time-dependent manners by apoptotic cell death via DNA fragmentation, chromatin condensation, and an increased sub-G1 phase. Apoptosis induced by thiosulfinates is associated with the activation of initiator caspase-8 and -9, and the effector caspase-3. In this study, thiosulfinates stimulated Bid cleavage, indicating that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. Thiosulfinates decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. Thiosulfinates also increased the expression of AIF, a caspase-independent mitochondrial apoptosis factor, in PC-3 cells. These results indicate that thiosulfinates from A. tuberosum L. inhibit cell proliferation and induce apoptosis in PC-3 cells, which may be mediated via both caspase-dependent and -independent pathways.  相似文献   

15.
Previous studies by our laboratory have reported that the T cell receptor (TCR) TCR/CD3 complex could mediate activation as well as apoptosis of T lymphocytes. Two tyrosine residues in the ITAM (immuno-receptor tyrosine-based activation motifs) of CD3 epsilon were required for apoptosis signalling of Jurkat T lymphocytes. Stable cell lines TJK and T3JK produced from CD8(-) Jurkat T lymphocytes by transfection with wild-type and mutant CD8 epsilon (fusion of the extracellular and transmembrane domains of human CD8 alpha to the intracellular domain of mouse CD3 epsilon), were used with CD8(-) Jurkat T lymphocytes for studying the role of single intact CD3 epsilon. 5-Fluorouracil (5-FU), a chemotherapeutic drug can induce cell death of many tumour cell lines. In the present experiments, we examined the expression of caspase-3, p53 and Bid in the three cell lines induced by 5-FU and/or anti-CD8 antibody. We found high expression of p53 during activation-induced cell death of TJK cells mediated by anti-CD8 antibody and apoptosis of TJK and T3JK induced by 5-FU, implicating p53 involvement in apoptosis of leukemia cells induced by anti-CD8 antibody and 5-FU. We also detected the active form of caspase-3 and Bid in apoptotic leukemia cells after treatment with 5-FU and/or anti-CD8 antibody, indicating that the drug and antibody induced cell death through caspase-3 and the signal pathway may involve the Bcl-2 protein family. Our results showed that combined treatment with 5-FU and anti-CD8 antibody could enhance the rate of apoptosis induced by 5-FU or anti-CD8 antibody through increased expression of p53 and by promoting activation of caspase-3 and Bid. This suggests that the combination of 5-FU and anti-CD8 antibody may play an important role in inducing apoptosis of leukemia cells.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death through the caspase activation cascade and translocation of cleaved Bid (tBid) by the apical caspase-8 to mitochondria to induce oligomerization of multidomain Bax and Bak. However, the roles of prosurvival Bcl-2 family proteins in TRAIL apoptosis remain elusive. Here we showed that, besides the specific cleavage and activation of Bid by caspase-8 and caspase-3, TRAIL-induced apoptosis in Jurkat T cells required the specific cleavage of Mcl-1 at Asp-127 and Asp-157 by caspase-3, while other prototypic antiapoptotic factors such as Bcl-2 or Bcl-X(L) seemed not to be affected. Mutation at Asp-127 and Asp-157 of Mcl-1 led to cellular resistance to TRAIL-induced apoptosis. In sharp contrast to cycloheximide-induced Mcl-1 dilapidation, TRAIL did not activate proteasomal degradation of Mcl-1 in Jurkat cells. We further established for the first time that the C-terminal domain of Mcl-1 became proapoptotic as a result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak, and voltage-dependent anion-selective channel 1 promoted mitochondrial apoptosis. These results suggested that removal of N-terminal domains of Bid by caspase-8 and Mcl-1 by caspase-3 enabled the maximal mitochondrial perturbation that potentiated TRAIL-induced apoptosis.  相似文献   

17.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

18.
Caspase-8 is a cysteine protease activated by membrane-bound receptors at the cytosolic face of the cell membrane, initiating the extrinsic pathway of apoptosis. Caspase-8 activation relies on recruitment of inactive monomeric zymogens to activated receptor complexes, where they produce a fully active enzyme composed of two catalytic domains. Although in vitro studies using drug-mediated affinity systems or kosmotropic salts to drive dimerization have indicated that uncleaved caspase-8 can be readily activated by dimerization alone, in vivo results using mouse models have reached the opposite conclusion. Furthermore, in addition to interdomain autoprocessing, caspase-8 can be cleaved by activated executioner caspases, and reports of whether this cleavage event can lead to activation of caspase-8 have been conflicting. Here, we address these questions by carrying out studies of the activation characteristics of caspase-8 mutants bearing prohibitive mutations at the interdomain cleavage sites both in vitro and in cell lines lacking endogenous caspase-8, and we find that elimination of these cleavage sites precludes caspase-8 activation by prodomain-driven dimerization. We then further explore the consequences of interdomain cleavage of caspase-8 by adapting the tobacco etch virus protease to create a system in which both the cleavage and the dimerization of caspase-8 can be independently controlled in living cells. We find that unlike the executioner caspases, which are readily activated by interdomain cleavage alone, neither dimerization nor cleavage of caspase-8 alone is sufficient to activate caspase-8 or induce apoptosis and that only the coordinated dimerization and cleavage of the zymogen produce efficient activation in vitro and apoptosis in cellular systems.  相似文献   

19.
Death-associated protein (Daxx) deletion mutant (aa 501-625) has been known to be an inducer of apoptosis. In this study, we observed that the Bax-dependent mitochondrial death signaling pathway plays an important role in Daxx501-625-induced apoptosis. Daxx fragment-induced activation of caspase-9 and -3 was mediated through the apoptosis signal-regulating kinase 1 (ASK1)-MEK-c-Jun-N-terminal kinase (JNK)/p38-Bax pathway. By overexpressing JNK-binding domain (JBD) of JIP1, a JNK-inhibitory protein, and treatment with SB203580, a specific p38 inhibitor, DU-145 cells were made resistant to Daxx501-625-induced apoptosis. Capase-3 deficiency, Bax deficiency, or overexpression of a dominant-negative caspase-9 mutant prevented apoptosis, even though the Daxx501-625 fragment still activated the ASK1-MEK-MAPK pathway. Interestingly, Daxx501-625-induced Bcl-2 interacting domain (Bid) cleavage was suppressed in the dominant-negative caspase-9 mutant cells, whereas Bim was still phosphorylated in these cells. These results suggest that cleavage of Bid occurs downstream of caspase-9 activation. In contrast, phosphorylation of Bim is upstream of caspase-9 activation. Taken together, our results suggest that Daxx501-625-induced apoptosis is mediated through the ASK1-MEK-JNK/p38-Bim-Bax-dependent caspase pathway.  相似文献   

20.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号