首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously tested the P300-based Complex Trial protocol for deception detection against 2 and 4 countered of 4 irrelevant stimuli. The protocol detected 90-100% of these subjects with <10% false positives. We have also shown that Reaction Time (RT) to the first trial stimulus is increased (group effect) with countermeasure use. We also reported a new P900 component associated with countermeasure use when 2 of 4 irrelevants are countered. In the present study we report data from 4 new groups and re-present for comparison previously collected data to have 7 groups: an innocent control, a guilty group not using countermeasures, and 5 guilty/countermeasure groups who counter from 1 to all 5 stimuli presented (4 irrelevants plus a probe). Subjects were detected at rates varying from 92 to 100% in the 6 guilty groups (n = 12 or 13 per group). There was 1 false positive in 13 innocent subjects. Additionally, 41 of 60 CM users were identified with RT as using countermeasures. P900 appeared in the 2 groups using 2 and 3 countermeasures.  相似文献   

2.
Countermeasures pose a serious threat to the effectiveness of the Concealed Information Test (CIT). In a CIT experiment, Rosenfeld and Labkovsky in Psychophysiology 47(6):1002–1010, (2010) observed a previously unknown positive ERP component at about 900 ms post-stimulus at Fz and Cz that could potentially serve as an index of countermeasure use. Here, we explored the hypothesis that this component, termed P900, occurs in response to a signal that no further specific response is required in a trial, and could thus appear in countermeasure users that respond differentially depending on the stimulus that appears. In the present experiments, subjects viewed four non-meaningful (irrelevant) dates and one oddball date. In three experiments, we examined P900’s antecedent conditions. In the first, the unique item was a personally relevant oddball (the subject’s birthdate). In a second, the unique item was a non-personally relevant oddball (an irrelevant date in a unique font color). In a third, all dates were irrelevant. We speculated that the presence of an oddball would not be necessary for P900. All participants made countermeasure-like responses following two specific irrelevant dates. As hypothesized, P900s were seen to non-responded-to irrelevant and oddball stimuli in all subjects but not to responded-to irrelevant stimuli, and the presence of an oddball was not necessary for elicitation of P900. This finding has potential application in deception settings—the presence of a P300 accompanied by the presence of a P900 in response to non-countered stimuli could provide evidence of incriminating knowledge accompanied by the attempt to use countermeasures to evade detection.  相似文献   

3.
The capacity to deceive others is a complex mental skill that requires the ability to suppress truthful information. The polygraph is widely used in countries such as the USA to detect deception. However, little is known about the effects of emotional processes (such as the fear of being found guilty despite being innocent) on the physiological responses that are used to detect lies. The aim of this study was to investigate the time course and neural correlates of untruthful behavior by analyzing electrocortical indexes in response to visually presented neutral and affective questions. Affective questions included sexual, shameful or disgusting topics. A total of 296 questions that were inherently true or false were presented to 25 subjects while ERPs were recorded from 128 scalp sites. Subjects were asked to lie on half of the questions and to answer truthfully on the remaining half. Behavioral and ERP responses indicated an increased need for executive control functions, namely working memory, inhibition and task switching processes, during deceptive responses. Deceptive responses also elicited a more negative N400 over the prefrontal areas and a smaller late positivity (LP 550–750 ms) over the prefrontal and frontal areas. However, a reduction in LP amplitude was also elicited by truthful affective responses. The failure to observe a difference in LP responses across conditions likely results from emotional interference. A swLORETA inverse solution was computed on the N400 amplitude (300–400 ms) for the dishonest – honest contrast. These results showed the activation of the superior, medial, middle and inferior frontal gyri (BA9, 11, 47) and the anterior cingulate cortex during deceptive responses. Our results conclude that the N400 amplitude is a reliable neural marker of deception.  相似文献   

4.
When searching for an object, we usually avoid items that are visually different from the target and objects or places that have been searched already. Previous studies have shown that neural activity in the lateral intraparietal area (LIP) can be used to guide this behaviour; responses to task irrelevant stimuli or to stimuli that have been fixated previously in the trial are reduced compared with responses to potential targets. Here, we test the hypothesis that these reduced responses have a different genesis. Two animals were trained on a visual foraging task, in which they had to find a target among a number of physically identical potential targets (T) and task irrelevant distractors. We recorded neural activity and local field potentials (LFPs) in LIP while the animals performed the task. We found that LFP power was similar for potential targets and distractors but was greater in the alpha and low beta bands when a previously fixated T was in the response field. We interpret these data to suggest that the reduced single-unit response to distractors is a bottom-up feed-forward result of processing in earlier areas and the reduced response to previously fixated Ts is a result of active top-down suppression.  相似文献   

5.
We examined the short- and long-term habituation of auditory event-related potentials (ERPs) elicited by tones, complex tones and digitized speech sounds (vowels and consonant-vowel-consonant syllables). Twelve different stimuli equated in loudness and duration (300 msec) were studied. To examine short-term habituation stimuli were presented in trains of 6 with interstimulus intervals of 0.5 or 1.0 sec. The first 4 stimuli in a train were identical standards. On 50% of the trains the standard in the 5th position was replaced by a deviant probe stimulus, and on 20% of the trains the standard in the 6th position was replaced by a target, a truncated standard that required a speeded button press response.Short-term habituation (STH) was complete by the third stimulus in the train and resulted in amplitude decrements of 50–75% for the N1 component. STH was partially stimulus specific in that amplitudes were larger following deviant stimuli in the 5th position than following standards. STH of the N1 was more marked for speech sounds than for loudness-matched tones or complex tones at short ISI. In addition, standard and deviant stimuli that differed in phonetic structure showed more cross-habituation than did tones or complex tones that differed in frequency. This pattern of results suggests that STH is a function of the acoustic resemblance of successive stimuli.The long-term habituation (LTH) of the ERP was studied by comparing amplitudes across balanced 5.25 m stimulus blocks over the course of the experiment. Two types of LTH were observed. The N1 showed stimulus-specific LTH in that N1 amplitudes declined during the presentation of a stimulus, but returned to control levels when a different stimulus was presented in the subsequent condition. In contrast, the P3 elicited by the deviant stimuli showed non-specific LTH, being reduced across successive blocks containing different stimuli. P3s elicited by target stimuli remained stable in amplitude.  相似文献   

6.
The aim of this research is to study the impact of extreme prematurity on the cognitive development of the child as assessed at age 5 years 9 months. Our samples include 15 healthy prematures born between 25 and 28 weeks of gestational age carefully matched with 15 full-term controls. In the first experiment, two different auditory stimuli were presented to the subjects who listened passively without instruction. The second experiment consisted of a standard visual oddball task in which the subjects were instructed to `catch' two different animals, by pushing a left or right button for a moose (n=120) or a raccoon (n=40), respectively. In the auditory task, 3 ERP peaks were analyzed (frontal N100 and P3a, temporal P2). All premature children demonstrated normal early frontal N100 and temporal P2 responses. The group differences were apparent in the late positivity (P3a) where controls showed a larger amplitude to the rare tones applied evenly to both ears. In contrast, the prematures did not show sensitivity to rare tones but showed a larger P3a upon left ear stimulation, when compared to the right. Also, the ERPs to the visual oddball task showed normal early positivities (P250–300) in the premature group. Once again, deviations from the normal were evident in late waves. The ERPs recorded from prematures showed a more diffuse topography especially between 500 and 600 ms post-stimulus and around the posterior area (P550). The succeeding negativity (SW) was not altered in the premature group. The ERP data suggest that premature children, even without clinically apparent problems, convey specific ERP singularity when engaged in a task that involves complex processing.  相似文献   

7.

Objective

We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI.

Approach

We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline.

Main Results

Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.  相似文献   

8.
The brain–computer interface P300 speller is aimed to help those patients unable to activate muscles to spell words by utilizing their brain activity. However, a problem associated with the use of this brain–computer interface paradigm is the generation mechanics of P300 related to responses to visual stimuli. Herein, we investigated the event-related potential (ERP) response for the P300-based brain–computer interface speller. A signal preprocessing method integrated coherent average, principal component analysis (PCA) and independent component analysis (ICA) to reduce the dimensions and noise in the raw data. The time–frequency analysis was based on wavelet and two characteristic parameters of event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were computed to indicate the evoked response (time-locked) and phase reset (phase-locked) activity, respectively. Results demonstrated that the proposed method was valid for the time-locked and phase-locked feature extraction and both the evoked response and phase reset contributed to the genesis of the P300 signal. These electrophysiological responses characteristics of ERPs would be used for BCI P300 speller design and its signal processing strategies.  相似文献   

9.
One of the earliest identifiable features of autism spectrum disorder (ASD) is altered attention. Mice expressing the ASD-associated R451C mutation in synaptic adhesion protein neuroligin-3 (NL3) exhibit impaired reciprocal social interactions and repetitive and restrictive behaviours. The role of this mutation in attentional abnormalities has not been established. We assessed attention in male NL3R451C mice using two well-established tasks in touchscreen chambers. In the 5-choice serial reaction task, rodents were trained to attend to light stimuli that appear in any one of five locations. While no differences between NL3R451C and WT mice were seen in accuracy or omissions, slower response times and quicker reward collection latencies were seen across all training and probe trials. In the rodent continuous-performance test, animals were required to discriminate, and identify a visual target pattern over multiple distractor stimuli. NL3R451C mice displayed enhanced ability to attend to stimuli when task-load was low during training and baseline but lost this advantage when difficulty was increased by altering task parameters in probe trials. NL3R451C mice made less responses to the distractor stimuli, exhibiting lower false alarm rates during all training stages and in probe trials. Slower response times and quicker reward latencies were consistently seen in NL3R451C mice in the rCPT. Slower response times are a major cognitive phenotype reported in ASD patients and are indicative of slower processing speed. Enhanced attention has been shown in a subset of ASD patients and we have demonstrated this phenotype also exists in the NL3R451C mouse model.  相似文献   

10.
An important goal of research on the cognitive neuroscience of decision-making is to produce a comprehensive model of behavior that flows from perception to action with all of the intermediate steps defined. To understand the mechanisms of perceptual decision-making for an auditory discrimination experiment, we connected a large-scale, neurobiologically realistic auditory pattern recognition model to a three-layer decision-making model and simulated an auditory delayed match-to-sample (DMS) task. In each trial of our simulated DMS task, pairs of stimuli were compared each stimulus being a sequence of three frequency-modulated tonal-contour segments, and a "match" or "nonmatch" button was pressed. The model's simulated response times and the different patterns of neural responses (transient, sustained, increasing) are consistent with experimental data and the simulated neurophysiological activity provides insights into the neural interactions from perception to action in the auditory DMS task.  相似文献   

11.
Brain fingerprinting (BF) detects concealed information stored in the brain by measuring brainwaves. A specific EEG event-related potential, a P300-MERMER, is elicited by stimuli that are significant in the present context. BF detects P300-MERMER responses to words/pictures relevant to a crime scene, terrorist training, bomb-making knowledge, etc. BF detects information by measuring cognitive information processing. BF does not detect lies, stress, or emotion. BF computes a determination of “information present” or “information absent” and a statistical confidence for each individual determination. Laboratory and field tests at the FBI, CIA, US Navy and elsewhere have resulted in 0% errors: no false positives and no false negatives. 100% of determinations made were correct. 3% of results have been “indeterminate.” BF has been applied in criminal cases and ruled admissible in court. Scientific standards for BF tests are discussed. Meeting the BF scientific standards is necessary for accuracy and validity. Alternative techniques that failed to meet the BF scientific standards produced low accuracy and susceptibility to countermeasures. BF is highly resistant to countermeasures. No one has beaten a BF test with countermeasures, despite a $100,000 reward for doing so. Principles of applying BF in the laboratory and the field are discussed.  相似文献   

12.
Tinnitus is the perception of sound in the absence of external stimulus. Currently, the pathophysiology of tinnitus is not fully understood, but recent studies indicate that alterations in the brain involve non-auditory areas, including the prefrontal cortex. In experiment 1, we used a go/no-go paradigm to evaluate the target detection speed and the inhibitory control in tinnitus participants (TP) and control subjects (CS), both in unimodal and bimodal conditions in the auditory and visual modalities. We also tested whether the sound frequency used for target and distractors affected the performance. We observed that TP were slower and made more false alarms than CS in all unimodal auditory conditions. TP were also slower than CS in the bimodal conditions. In addition, when comparing the response times in bimodal and auditory unimodal conditions, the expected gain in bimodal conditions was present in CS, but not in TP when tinnitus-matched frequency sounds were used as targets. In experiment 2, we tested the sensitivity to cross-modal interference in TP during auditory and visual go/no-go tasks where each stimulus was preceded by an irrelevant pre-stimulus in the untested modality (e.g. high frequency auditory pre-stimulus in visual no/no-go condition). We observed that TP had longer response times than CS and made more false alarms in all conditions. In addition, the highest false alarm rate occurred in TP when tinnitus-matched/high frequency sounds were used as pre-stimulus. We conclude that the inhibitory control is altered in TP and that TP are abnormally sensitive to cross-modal interference, reflecting difficulties to ignore irrelevant stimuli. The fact that the strongest interference effect was caused by tinnitus-like auditory stimulation is consistent with the hypothesis according to which such stimulations generate emotional responses that affect cognitive processing in TP. We postulate that executive functions deficits play a key-role in the perception and maintenance of tinnitus.  相似文献   

13.
在猕猴执行延缓辨别作业和单纯辨别作业时,观察了与作业无关的新异刺激对额叶神经元延缓期放电的影响。在这两种作业中,延缓期在1—4s之间随机变化。此时,动物必须高度注意信号的变化,稍不注意即导致操作错误。此外,在延缓辨别作业中,动物在延缓期还要暂时记住暗示期的信号,单纯辨别作业则无此要求。在203个与作业相关的神经元中,有70个神经元在延缓期出现放电频率变化,其中见于延缓辨别作业者41个,见于单纯辨别作业者29个。实验结果表明,在这两种作业的延缓期所出现的神经元放电增多的反应,有着许多相同的特点。与课题无关的声、光、触、痛等刺激引起分心时,神经元的延缓期反应出现明显的变化,随之出现操作错误。多数神经元的反应受到抑制,但也有出现反应增强者,而且同一神经元对不同感觉模式的无关刺激可出现不同的效应,表现出不同程度的感觉模式特异性。此外,无关刺激在延缓期和在测试间歇期可产生不同甚至相反的效应。上述在延缓期出现反应的神经元主要位于额叶弓状沟上支内侧部的一定范围内。本文对实验结果进行了讨论,认为额叶神经元的延缓期反应,可能在很大程度上与注意有关。额叶神经元感觉模式各种程度的特异性可能是注意的通道选择性的神经基础。额叶的背内侧部,包括前额叶后部和运动前区前部  相似文献   

14.
Molecular docking computationally screens thousands to millions of organic molecules against protein structures, looking for those with complementary fits. Many approximations are made, often resulting in low “hit rates.” A strategy to overcome these approximations is to rescore top-ranked docked molecules using a better but slower method. One such is afforded by molecular mechanics-generalized Born surface area (MM-GBSA) techniques. These more physically realistic methods have improved models for solvation and electrostatic interactions and conformational change compared to most docking programs. To investigate MM-GBSA rescoring, we re-ranked docking hit lists in three small buried sites: a hydrophobic cavity that binds apolar ligands, a slightly polar cavity that binds aryl and hydrogen-bonding ligands, and an anionic cavity that binds cationic ligands. These sites are simple; consequently, incorrect predictions can be attributed to particular errors in the method, and many likely ligands may actually be tested. In retrospective calculations, MM-GBSA techniques with binding-site minimization better distinguished the known ligands for each cavity from the known decoys compared to the docking calculation alone. This encouraged us to test rescoring prospectively on molecules that ranked poorly by docking but that ranked well when rescored by MM-GBSA. A total of 33 molecules highly ranked by MM-GBSA for the three cavities were tested experimentally. Of these, 23 were observed to bind—these are docking false negatives rescued by rescoring. The 10 remaining molecules are true negatives by docking and false positives by MM-GBSA. X-ray crystal structures were determined for 21 of these 23 molecules. In many cases, the geometry prediction by MM-GBSA improved the initial docking pose and more closely resembled the crystallographic result; yet in several cases, the rescored geometry failed to capture large conformational changes in the protein. Intriguingly, rescoring not only rescued docking false positives, but also introduced several new false positives into the top-ranking molecules. We consider the origins of the successes and failures in MM-GBSA rescoring in these model cavity sites and the prospects for rescoring in biologically relevant targets.  相似文献   

15.
In a complex choice reaction time experiment, patterned stimuli without luminance change were presented, and pattern-specific visual evoked potentials to lower half-field stimulation were recorded. Two experimental conditions were used. The first was the between-field selection, where square patterns were presented in either the lower or the upper half of the visual field. In a given stimulus run one of the half-fields was task-relevant, and the subjects' task was to press a microswitch to stimuli of higher duration value (GO stimuli), while they had to ignore shorter ones, i. e. stimuli of lower apparent spatial contrast (NOGO stimuli). They had to ignore the stimuli appearing in the irrelevant half-field (IRR stimuli). In order to ensure proper fixation, the subjects had to press another microswitch at the onset of a dim light at the fixation point (CRT stimuli). Our second experimental condition was the within-field selection, where the GO, NOGO, and IRR stimuli appeared in the lower half of the visual field. GO and NOGO were square patterns while IRR stimuli were constructed of circles, or vice versa. (The CRT stimuli were the same as in the previous condition.) Three pattern-specific visual evoked potential components were identified, i. e. CI (70 ms latency), CII (100 ms latency), and CIII (170 ms latency). There were marked selective attention effects on both the CI-CII and CII-CIII peak-to-peak amplitudes. In both experimental conditions, responses with the highest amplitude were evoked by the GO type of stimuli, while the IRR stimuli evoked the smallest responses. According to these results, attention effects on the pattern-specific visual evoked potentials in the first 200 ms cannot be attributed to a simple stimulus set kind of selection.  相似文献   

16.

Background

Some studies have reported gender differences in N170, a face-selective event-related potential (ERP) component. This study investigated gender differences in N170 elicited under oddball paradigm in order to clarify the effect of task demand on gender differences in early facial processing.

Findings

Twelve males and 10 females discriminated targets (emotional faces) from non-targets (emotionally neutral faces) under an oddball paradigm, pressing a button as quickly as possible in response to the target. Clear N170 was elicited in response to target and non-target stimuli in both males and females. However, females showed more negative amplitude of N170 in response to target compared with non-target, while males did not show different N170 responses between target and non-target.

Conclusions

The present results suggest that females have a characteristic of allocating attention at an early stage when responding to faces actively (target) compared to viewing faces passively (non-target). This supports previous findings suggesting that task demand is an important factor in gender differences in N170.  相似文献   

17.
Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI). Participants performed a novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of hippocampal novelty processing.  相似文献   

18.
A key benefit of grouping in prey species is access to social information, including information about the presence of predators. Larger groups of prey animals respond both sooner and at greater distances from predators, increasing the likelihood that group members will successfully avoid capture. However, identifying predators in complex environments is a difficult task, and false alarms (alarm behaviours without genuine threat) appear surprisingly frequent across a range of taxa including insects, amphibians, fish, mammals, and birds. In some bird flocks, false alarms have been recorded to substantially outnumber true alarms. False alarms can be costly in terms of both the energetic costs of producing alarm behaviours as well as lost opportunity costs (e.g. abandoning a feeding patch which was in fact safe, losing sleep if an animal is resting/roosting, or losing mating opportunities). Models have shown that false alarms may be a substantial but underappreciated cost of group living, introducing an inherent risk to using social information and a vulnerability to the propagation of false information. This review will focus on false alarms, introducing a two-stage framework to categorise the different factors hypothesised to influence the propensity of animal groups to produce false alarms. A number of factors may affect false alarm rate, and this new framework splits these factors into two core processing stages: (i) individual perception and response; and (ii) group processing of predator information. In the first stage, individuals in the group monitor the environment for predator cues and respond. The factors highlighted in this stage influence the likelihood that an individual will misclassify stimuli and produce a false alarm (e.g. lower light levels can make predator identification more difficult and false alarms more common). In the second stage, alarm information from individuals is processed by the group. The factors highlighted in this stage influence the likelihood of alarm information being copied by group members and propagated through the group (e.g. some animals implement group processing mechanisms that regulate the spread of behavioural responses such as consensus decision making through the quorum response). This review follows the structure of this new framework, focussing on the causes of false alarms, factors that influence false alarm rate, the transmission of alarm information through animal groups, mechanisms to mitigate the spread of false alarms, and the consequences of false alarms.  相似文献   

19.
When administered intracerebroventricularly (ICV) in rats, corticotropin-releasing factor (CRF) possesses arousing and anxiogenic properties, which may be found reflected in autonomic and behavioral activation. As these responses are dependent on dose and situation, ICV-injected CRF may affect behavioral responses to a defined stimulus in a different fashion than autonomic concomitants. Two experiments were conducted in order to test this hypothesis. In both experiments, rats were treated ICV with CRF or an artificial cerebrospinal fluid (aCSF) 5 min prior to a 15-min exposure to an electrified prod (shock-prod burying test, SPB test) in their home cages. In the first experiment, 0.3 ng CRF injected ICV in unhandled rats significantly reduced the prod-burying response to electric shock, in favor of immobility, whereas following 300 ng CRF ICV, the predominant behavioral response was grooming behavior. In contrast, habituated rats, implanted with telemetric devices to measure heart rate, core temperature, and gross activity in the second experiment, showed a significant increase of burying behavior after 0.3 ng CRF ICV, in comparison to vehicle-treated controls. However, simultaneous cardiac acceleration was of the same magnitude and duration in both groups. In addition, whereas similar rises in CT were observed in both groups during the SPB test, CRF-treated rats showed more marked rise in core temperature during the first 15 min of the posttest period. At the 24-h retention test, rats belonging to the CRF group showed burying behavior and HR responses, in onset, magnitude, and duration similar to day 1, whereas extinction of the burying response and tachycardia was found in controls. Changes in CT, although less marked, showed the same pattern as on day 1 in both groups. These results show a differential effect of central CRF on behavioral and autonomic activation induced by a well-defined stressful stimulus. The response to CRF seems to be not only situation related, but also dependent on the pretest experience of the animal.  相似文献   

20.
Excitatory signaling in bacterial probed by caged chemoeffectors.   总被引:8,自引:2,他引:6       下载免费PDF全文
Chemotactic excitation responses to caged ligand photorelease of rapidly swimming bacteria that reverse (Vibrio alginolyticus) or tumble (Escherichia coli and Salmonella typhimurium) have been measured by computer. Mutants were used to assess the effects of abnormal motility behavior upon signal processing times and test feasibility of kinetic analyses of the signaling pathway in intact bacteria. N-1-(2-Nitrophenyl)ethoxycarbonyl-L-serine and 2-hydroxyphenyl 1-(2-nitrophenyl) ethyl phosphate were synthesized. These compounds are a 'caged' serine and a 'caged' proton and on flash photolysis release serine and protons and attractant and repellent ligands, respectively, for Tsr, the serine receptor. The product quantum yield for serine was 0.65 (+/- 0.05) and the rate of serine release was proportional to [H+] near-neutrality with a rate constant of 17 s-1 at pH 7.0 and 21 degrees C. The product quantum yield for protons was calculated to be 0.095 on 308-nm irradiation but 0.29 (+/- 0.02) on 300-350-nm irradiation, with proton release occurring at > 10(5) s-1. The pH jumps produced were estimated using pH indicators, the pH-dependent decay of the chromophoric aci-nitro intermediate and bioassays. Receptor deletion mutants did not respond to photorelease of the caged ligands. Population responses occurred without measurable latency. Response times increased with decreased stimulus strength. Physiological or genetic perturbation of motor rotation bias leading to increased tumbling reduced response sensitivity but did not affect response times. Exceptions were found. A CheR-CheB mutant strain had normal motility, but reduced response. A CheZ mutant had tumbly motility, reduced sensitivity, and increased response time to attractant, but a normal repellent response. These observations are consistent with current ideas that motor interactions with a single parameter, namely phosphorylated CheY protein, dictate motor response to both attractant and repellent stimuli. Inverse motility motor mutants with extreme rotation bias exhibited the greatest reduction in response sensitivity but, nevertheless, had normal attractant response times. This implies that control of CheY phosphate concentration rather than motor reactions limits responses to attractants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号