首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hodgkin-associated Ki-1 antigen was analyzed in different cell lines. In Hodgkin analogous L428 cells, biosynthetically labeled with radioactive amino acids, the Ki-1 antibody precipitated three glycoproteins with 90, 105, and 120 kDa, respectively. Surface-labeling revealed that the two larger components were membrane-associated forms of the Ki-1 antigen, although the 90-kDa molecule was shown in pulse-chase experiments to be the precursor of the 105- and 120-kDa forms. All three forms of the Ki-1 antigen possess a tunicamycin-sensitive 6-kDa N-linked carbohydrate moiety. O-Linked oligosaccharides could not be detected. Thus, the differences in m.w. are probably not due to glycosylation. The ionophore monensin prevented the appearance of the membrane-associated molecules, which demonstrated that they are assembled between the transcompartment of the Golgi complex and their insertion into the cell membrane. The 90-kDa precursor molecule cannot be generated by disulfide reduction from the two larger forms. After internal labeling with P-32, only the 105- and 120-kDa bands became visible, indicating that the Ki-1 molecule is phosphorylated after its processing into the two larger membrane-associated forms. Analysis of the Ki-1 antigens from other cell lines demonstrated that after external labeling of two other Hodgkin-derived cell lines, six Epstein-Barr virus lymphoblastoid cell lines and one human T leukemia virus I-positive T cell line, both the 105- and the 120-kDa membrane molecules could be detected, regardless of the presence or type of virus integrated.  相似文献   

2.
The HeFi-1 mAb recognizes a membrane protein on Hodgkin's disease cells and on a limited number of other human cells that are either tumorigenically transformed or virally activated. Herein biochemical and structural analyses of the HeFi-1 reactive membrane protein (HRMP) were done to identify its potential importance in cellular transformation in the Hodgkin's disease cell line L428, in the T cell lymphoma line HuT 78, and in several EBV-transformed lymphoblastoid cell lines. Immunoprecipitation studies demonstrated that the mature form of the HRMP had an apparent Mr of 120 kDa in tumor cells and 116 kDa in the EBV-transformed cell lines and that it was phosphorylated at both serine and tyrosine residues in all cell lines tested. The precursor to the HRMP is an 86-kDa core protein that, after processing by high mannose N-linked glycosylation, migrates with an apparent Mr of 90 kDa. This protein is then further processed to the mature 120-kDa HRMP in part by O-linked glycosylation, the addition of sialic acid residues, and by the conversion of N-linked oligosaccharides from the high mannose to the complex type. Detectable amounts of the 90-kDa molecule can be found in the membrane and, although this protein can be phosphorylated in vitro, it is not phosphorylated in intact cells. The combined results of this study suggest that the HRMP is involved in cellular metabolism and show that an unusual amount of post-translational processing of the 90-kDa precursor results in the formation, and perhaps phosphorylation, of the mature 120-kDa HRMP.  相似文献   

3.
Thirty-four human sera containing parietal cell autoantibodies (PCA) specifically immunoprecipitated two antigens, with apparent molecular masses of 60-90 kDa and 100-120 kDa under nonreducing conditions and 60-90 kDa and 120-150 kDa under reducing conditions, from porcine gastric membrane extracts. A third antigen of 92 kDa was only observed in immunoprecipitates analyzed under reducing conditions. By immunoblotting, 24 of the 34 PCA-positive sera reacted with only the 60-90-kDa antigen, three reacted with a broad 60-120-kDa smear, one reacted only with a 92-kDa antigen and six did not react. Reactivity with the 60-90-kDa antigen was observed with gastric membranes from dog, pig, rat, and rabbit. Twenty PCA-negative sera did not react with these components by immunoprecipitation or immunoblotting. PCA reactivity with the 60-90-kDa antigen was abolished when the gastric membranes were (a) digested with Pronase, (b) reduced with 100 mM dithiothreitol, (c) treated with sodium periodate, or (d) digested with N-glycanase. The 60-90-kDa and 100-120-kDa components were insensitive to neuraminidase treatment. N-glycanase digestion of 125I-labeled antigens purified by immunoprecipitation and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis collapsed the 60-90-kDa antigen to a sharp 34-kDa band; the 100-120-kDa component was unaffected. These observations suggest that (i) parietal cell antigens comprise three components of 60-90, 92, and 100-120 kDa; (ii) the epitopes differ in conformational sensitivity; (iii) the 60-90-kDa antigen is a conserved molecule comprising a 34-kDa core protein extensively glycosylated with N-linked oligosaccharides; (iv) sialic acid residues are not present in the 60-90- and 100-120-kDa molecules, and (v) the carbohydrate and protein moieties of the 60-90-kDa molecule are required for antibody binding.  相似文献   

4.
5.
The primary (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive calcium channels is present in full-length (212 kDa) and truncated (190 kDa) forms which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. In the present study, phosphorylation of the purified calcium channel by cA-PK followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed differential phosphorylation of the related 190- and 212-kDa forms. The 190-kDa form of the alpha 1 subunit was phosphorylated on three major and three minor tryptic phosphopeptides; the 212-kDa form was phosphorylated on all six of these phosphopeptides plus two that were unique. Time course experiments showed that a single site on the COOH-terminal portion of the full-length form of the alpha 1 subunit is most intensely and rapidly (within 10 s) phosphorylated. Phosphorylation occurs almost exclusively on this COOH-terminal site unless harsh conditions such as treatment with denaturing detergents are employed to expose phosphorylation sites within the 190-kDa segment of the molecule. Elution of phosphopeptides from the second dimension chromatograph followed by immunoprecipitation with an anti-peptide antibody (anti-CP1) directed against the COOH-terminal amino acid sequence enabled us to identify this major phosphorylation site as serine 1854. The nearby consensus sites for cA-PK phosphorylation at serines 1757 and 1772 were phosphorylated only after denaturation or proteolytic cleavage. Phosphorylation of serine 1854 may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   

6.
In order to develop a molecular probe to delineate chemical and biological characteristics of human neuroblastoma cells, a murine monoclonal antibody (Mab 5G3) was produced that is directed to a glycoprotein, preferentially expressed on the surface of such cells. This antibody is of IgG2a isotype, has an association constant of 8 X 10(9) M-1, and reacts preferentially with human neuroblastoma cell lines and fresh frozen tissue sections in enzyme-linked immunosorbent assay and immunoperoxidase assays, respectively. Minimal reactivity is observed with a variety of lymphoblastoid cell lines and normal fetal and adult tissues. Mab 5G3 specifically recognizes a neuroblastoma target glycoprotein antigen of 215 kDa that is derived from a 200-kDa precursor, as evident from pulse-chase biosynthetic studies. Treatment with tunicamycin revealed that both molecules contain N-asparagine-linked oligosaccharides; however, only the 215-kDa species is resistant to treatment with endo-beta-N-acetylglucosaminidase H and sensitive to neuraminidase, indicating that it contains trimmed and terminally sialylated oligosaccharides of the "complex" type. In contrast, the 200-kDa precursor is sensitive to endo-beta-N-acetylglucosaminidase H and resistant to neuraminidase treatment indicating that it contains high-mannose non-processed oligosaccharides. The 215-kDa molecule is sulfated, phosphorylated at serine residues, and expressed on the cell surface. A molecule of 200 kDa is detected by Mab 5G3 in spent culture medium of human neuroblastoma cells which is neither sulfated nor phosphorylated.  相似文献   

7.
Interleukin 3 (IL-3) is required for the proliferation of growth factor-dependent myeloid cell lines. To determine the possible signal transduction mechanisms involved in IL-3 growth regulation, we have examined the effects of IL-3 on tyrosine phosphorylation. Using a monoclonal antibody against phosphotyrosine, IL-3 was found to specifically and rapidly induce tyrosine phosphorylation of cytoplasmic proteins of 70, 56, and 38 kDa and a membrane-associated glycoprotein of 140 kDa. Minor and/or variable detected phosphoproteins of 120, 85, 51, and 28 kDa were also seen. Oncogenes encoding tyrosine protein kinases abrogate the requirement of factor-dependent myeloid cells for IL-3. We therefore compared the phosphoprotein profiles of a transformed, IL-3-independent cell line with the IL-3-induced profile. In cells transformed with trk, the 56-, 51-, and 38-kDa cytoplasmic phosphoproteins were constitutively phosphorylated, whereas the 140-kDa phosphoprotein was only phosphorylated in the presence of IL-3. Taken together, these results support a role for tyrosine phosphorylation in the IL-3 signal transduction pathway and suggest that growth factor abrogation by oncogenes encoding tyrosine protein kinases may be due to the phosphorylation of substrates which are normally phosphorylated in response to IL-3.  相似文献   

8.
Previous work has shown that a mammary-derived growth factor (MDGF1), a human milk-derived, acidic, 62-kDa, N-glycosylated growth factor binds to cell surface receptors and stimulates proliferation of mammary epithelial cells. An 18-amino acid N-terminal partial sequence of the factor did not show any homology to other known growth factors or proteins. Using polyclonal antiserum raised against the synthetic peptide, we demonstrated that conditioned medium prepared from human breast cancer cell lines contains the factor. The antibody could adsorb the biological activity of the factor present in the conditioned medium. Earlier experiments on receptor cross-linking indicated that the receptor was approximately 120-140 kDa. Since tyrosine phosphorylation plays a crucial role in cell proliferation and cell transformation, experiments were conducted to find out whether MDGF1 induces the appearance of phosphotyrosine in MDGF1-receptor-positive MDA-MB 468, MCF-7, and 184A1N4 cell lines compared to receptor-negative lines. Western blot analysis using monoclonal antiphosphotyrosine indicated that MDGF1 induces phosphotyrosine in a 180-185-kDa protein in MDGF1 receptor-positive cell lines. Phosphorylation was not blocked and phosphorylated proteins were not immunoprecipitated by an antibody directed against the binding site of the EGF receptor. Cell membrane fractionation demonstrated that phosphorylation induced by MDGF1 was membrane-associated. The nature of this 180-185-kDa protein and its possible relationship to the MDGF1 receptor are under investigation.  相似文献   

9.
A novel murine membrane-associated protein kinase, PKK (protein kinase C-associated kinase), was cloned on the basis of its physical association with protein kinase Cbeta (PKCbeta). The regulated expression of PKK in mouse embryos is consistent with a role for this kinase in early embryogenesis. The human homolog of PKK has over 90% identity to its murine counterpart, has been localized to chromosome 21q22.3, and is identical to the PKCdelta-interacting kinase, DIK (Bahr, C., Rohwer, A., Stempka, L., Rincke, G., Marks, F., and Gschwendt, M. (2000) J. Biol. Chem. 275, 36350-36357). PKK comprises an N-terminal kinase domain and a C-terminal region containing 11 ankyrin repeats. PKK exhibits protein kinase activity in vitro and associates with cellular membranes. PKK exists in three discernible forms at steady state: an underphosphorylated form of 100 kDa; a soluble, cytosolic, phosphorylated form of 110 kDa; and a phosphorylated, detergent-insoluble form of 112 kDa. PKK is initially synthesized as an underphosphorylated soluble 100-kDa protein that is quantitatively converted to a detergent-soluble 110-kDa form. This conversion requires an active catalytic domain. Although PKK physically associates with PKCbeta, it does not phosphorylate this PKC isoform. However, PKK itself may be phosphorylated by PKCbeta. PKK represents a developmentally regulated protein kinase that can associate with membranes. The functional significance of its association with PKCbeta remains to be ascertained.  相似文献   

10.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

11.
We have developed a monoclonal antibody, designated PR7212 (IgG1), which specifically recognizes the platelet-derived growth factor receptor (PDGFR) of primate cells. The antibody recognizes an extracellular epitope of the receptor, demonstrated by its ability to bind to intact cells. Using this antibody, we have detected three forms of PDGFR of approximately 180, 164, and 130 kDa. All three of the forms were detected by Western blot analysis of human dermal fibroblasts. Immunoprecipitates of 32P-labeled membrane extracts of human dermal fibroblasts demonstrate that phosphorylation of all three forms of the receptor is stimulated by PDGF. In addition, several smaller molecules were detected, ranging in size from 113 to 49 kDa, which are also phosphorylated in response to PDGF addition. These smaller molecules may be either PDGFR kinase substrates or partially degraded PDGFR. Only the 180- and the 164-kDa forms of the receptor are detectable from immunoprecipitates of soluble extracts of 35S-metabolically labeled cells. Pulse-chase experiments demonstrate that the 164-kDa form is a precursor of the 180-kDa molecule. After PDGF binding at 37 degrees C, the 180-kDa form disappears from the cell surface in parallel with a decrease in 125I-PDGF binding, providing evidence that occupation results in internalization of PDGFR rather than inactivation.  相似文献   

12.
Previously, we characterized a 140-kDa protein from Entamoeba histolytica as a beta1-integrin-like molecule that binds fibronectin. In this work we present data showing that the amoebic receptor is associated with another surface molecule, the 220-kDa lectin, and with protein tyrosine kinase activity. By immunoprecipitation with the alphabeta1Eh antibody, we demonstrated by immune complex assays for tyrosine protein kinases that the amoebic fibronectin receptor was associated with two phosphorylated proteins of 50 and 70 kDa when internal membranes were used as the source of antigen. When cells were stimulated with fibronectin, two proteins of 55 and 90 kDa were tyrosine phosphorylated, as shown by Western blot with alphaPY20, its phosphorylation being time dependent after fibronectin stimulation. However, when the actin cytoskeleton of fibronectin-stimulated trophozoites was stabilized with phalloidin, the level and the pattern of phosphorylated proteins were different. In this case, a high-molecular-weight component, heavily phosphorylated, was present, which may include the 220-kDa lectin. We also present data confirming that the signaling pathway that is activated by fibronectin is specific. This was demonstrated by comparing the pattern of phosphoproteins obtained in immune complexes prepared with alphabeta1Eh, alphaL220, and alphaPY20 from total extracts obtained in the presence of phalloidin, from cells that had been exposed to fibronectin, soluble concanavalin A, or concanavalin-A-coated substrate. The presence of tyrosine kinases associated with the beta1-integrin-like amoebic molecule was confirmed by immunoprecipitation assays along with the combined use of a tyrosine kinase-specific substrate, the peptide RR-SRC, and a tyrosine kinase inhibitor, genistein.  相似文献   

13.
Varicella-zoster virus (VZV) glycoprotein gE is the predominant viral cell surface molecule; it behaves as an Fc receptor for immunoglobulin G, but its central function may be more closely related to viral egress and cell-to-cell spread. To further analyze the receptor properties of VZV gE, the gE gene (also called open reading frame 68) was expressed by a baculovirus vector in insect cells. The recombinant baculovirus gE product had a molecular mass of 64 kDa, smaller than the previously documented 98 kDa of mature gE expressed in mammalian cells. The major reason for the lowered molecular mass was diminished glycosylation. In addition to the 64-kDa form, a larger (130-kDa) form was observed in insect cells and represented dimerized 64-kDa molecules. Both the monomeric and dimeric gE forms were highly phosphorylated in insect cells. Protein kinase assays conducted in vitro with [gamma-32P]ATP and [gamma-32P]GTP indicated that endogenous casein kinase II was phosphorylating monomeric gE, while the dimeric gE form was phosphorylated by another kinase which did not utilize [gamma-32P]GTP. When immobilized recombinant gE molecules were probed with a monoclonal antibody which specifically recognizes a phosphotyrosine linkage, the gE dimer was found to be tyrosine phosphorylated whereas the monomer was not similarly modified. When recombinant gE produced in HeLa cells was probed with the same antiphosphotyrosine antibody, a dimeric gE form at 130 kDa was detected on the cell surface. These results suggested that VZV gE closely resembled other cell surface receptors, being modified on its various forms by both serine/threonine and tyrosine protein kinases. In this case, tyrosine phosphorylation occurred on a previously unrecognized and underglycosylated VZV gE dimeric product.  相似文献   

14.
We describe a 120-kDa protein (pp120) that is phosphorylated on tyrosine in cells attached to fibronectin-coated surfaces. The protein appears to be located in focal contacts where it codistributes with beta 1 integrins. pp120 is distinct from the beta 1 subunit of integrins and from vinculin and alpha-actinin. pp120 is rapidly dephosphorylated in cells suspended by trypsinization but becomes rapidly phosphorylated in cells attaching and spreading on fibronectin. Attachment of cells to RGD-containing peptides, polylysine, or concanavalin A is not sufficient to induce phosphorylation of pp120. The 120-kDa cell-binding domain of fibronectin can induce some phosphorylation of pp120, but further phosphorylation occurs in the presence also of the heparin-binding domain of fibronectin. Phosphorylation of pp120 precedes, but is correlated with, subsequent cell spreading. Phosphorylation of pp120 can also be triggered by attachment of cells to anti-integrin antibodies, and this requires the cytoplasmic domain of the integrin beta 1 subunit. Thus interaction of beta 1 integrins with extracellular ligands (fibronectin or antibodies) triggers phosphorylation of an intracellular 120-kDa protein, pp120, that may be involved in the responses of cells to attachment.  相似文献   

15.
The structure of IFN-alpha receptor was studied by 1) developing antibodies against the receptor, and 2) screening a number of cell lines by affinity cross-linking to identify cells that express different IFN-alpha 2 receptor structures. We report that two different patterns of IFN-alpha 2 receptor are observed in human cells of hematopoietic origin. The predominant form of the IFN-alpha receptor is a multichain structure in which IFN-alpha 2 forms complexes of 110 and 130 kDa (alpha-subunit). A high Mr complex of 210 kDa results from the association of alpha-subunit and other receptor components. In contrast, another form of the receptor has been identified in the IFN-alpha-resistant U-937 cell line and in some cases of acute leukemia. This form of the IFN-alpha receptor is characterized by the presence of the alpha- subunit, and the absence of the 110- and 210-kDa bands. Also a novel 180-kDa complex and a more prominent 75-kDa band are observed. Functional studies performed in U-937 cells showed that this cell line is not only partially resistant to the antiproliferative and antiviral effects of IFN-alpha, but also fails to down-regulate the alpha-subunit of the IFN-alpha receptor upon IFN-alpha binding.  相似文献   

16.
Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell-binding fragment contains a cryptic site for monocyte chemotaxis which is expressed upon enzymatic cleavage of fibronectin.  相似文献   

17.
Cultured neurons from rat embryo striatum were found to contain two structurally distinct forms of pp60c-src. The 60-kilodalton (kDa) form appeared similar to pp60c-src from cultured rat fibroblasts or astrocytes. The 61-kDa form was specific to neurons and differed in the NH2-terminal 18 kDa of the molecule. In undifferentiated neurons the predominant phosphorylated species of pp60c-src was the fibroblast form. Upon differentiation, a second phosphorylated form of pp60c-src was detected. This form had two or more additional sites of serine phosphorylation within the NH2-terminal 18-kDa region of the molecule, one of which was Ser-12. The specific protein-tyrosine kinase activity of the total pp60c-src population increased 14-fold, as measured by autophosphorylation, or 7-fold, as measured by phosphorylation of an exogenous substrate, as striatal neurons differentiated. This elevation in protein kinase activity occurred without a detectable decrease in Tyr-527 phosphorylation or increase in Tyr-416 phosphorylation. Our results support the idea that the expression of the neuron-specific form of pp60c-src and the increase in specific protein kinase activity may be important for neuronal differentiation.  相似文献   

18.
The mouse lymph node specific homing receptor gp90MEL-14 is a 95-kDa molecular mass ubiquitinated cell surface molecule involved in the binding of lymphocytes to high endothelial venules in peripheral lymph nodes. The molecule is thought to consist of a core protein to which ubiquitin side chains are covalently bound. Recently we cloned the cDNA encoding the core protein; this cDNA clone encodes for a polypeptide with an estimated molecular mass of 37 kDa. We have studied the biosynthesis of gp90MEL-14 in an effort to explain the difference in molecular mass between the core protein and the 95-kDa mature molecule. Pulse labeling experiments show a rapid synthesis of a 70-kDa precursor form that contains high-mannose N-linked oligosaccharides. On processing of the high-mannose oligosaccharides into complex N-linked oligosaccharides, the precursor matures in a single step into the 95-kDa form. Experiments using deglycosylating enzymes and inhibitors of N-linked glycosylation demonstrate that the molecular mass of deglycosylated gp90MEL-14 is 45 kDa; extensive N-linked glycosylation is responsible for the difference in molecular mass with the mature 95-kDa form. The core protein molecular weight of in vitro transcribed and translated gp90MEL-14 cDNA is consistent with the estimated molecular mass of 37 kDa, calculated from the cDNA sequence of the core protein, and 8 to 10 kDa less than the protein molecular mass of gp90MEL-14 translated in vivo in the presence of tunicamycin (45 kDa). Inasmuch as we have ruled out glycosylation as accounting for this discrepancy, this is consistent with the addition of one ubiquitin moiety to the core protein during biosynthesis. Limited proteolysis confirms the similarity between in vitro transcribed gp90MEL-14 cDNA and the tunicamycin form of gp90MEL-14.  相似文献   

19.
The adhesion molecule lymphocyte function-associated antigen 3 (LFA-3) (CD58) is an important regulator of immune cell function which occurs as both surface-associated and ‘soluble’ forms. This study has investigated the inter-relationship and the effects of cytokines on the expression of LFA-3 isoforms. The surface antigen was found to be relatively unaffected by cytokines, but the release of soluble LFA-3 (sLFA-3) was highly responsive to interleukin 1βT (IL-lβT), interferon gamma (IFN-Sγ) and tumour necrosis factor alpha (TNF-α). This modulation was cell-specific, particularly with regard to IFN-γ, which up-regulated sLFA-3 release by A431 cells but down-regulated the release of the soluble form from HEp2 and HepG2 cells. We further demonstrated that LFA-3 is also present in a cytoplasmic ‘pool’ in each of the cells and, moreover, that cleavage of LFA-3 from the cell surface by phospholipase C resulted in an increase in the levels of the intracellular LFA-3 and replacement of the membrane-associated antigen. These observations suggest that the expression of the surface, soluble and intracellular forms of LFA-3 may be linked by regulatory mechanisms which are likely to exert an important influence on inflammatory interactions.  相似文献   

20.
The molecular nature of the structural changes on the T cell-CD6 glycoprotein upon cell activation has been investigated. Cell surface 125I labeling and immunoprecipitation studies from PBMC revealed that after stimulation by different activators of protein kinase C, or after exposure to either human or FCS, the anti-CD6 mAb precipitated an additional protein of 130 kDa, together with the 105-kDa protein present in resting cells. Cell surface expression of this 130-kDa CD6 protein form could be detected as early as 15 min after PKC activation, without requiring de novo protein synthesis. Pulse and chase activation experiments of radioiodinated cells suggested that the 130-kDa molecule is the result of a posttranslational modification of the 105-kDa protein and that this conversion is a reversible process. Studies of 32P-cell labeling and immunoprecipitation by anti-CD6 mAb revealed that only the 130-kDa form was phosphorylated, whereas the 105-kDa protein was unphosphorylated both in resting and activated cells. Moreover, the removal of phosphate groups from the 130-kDa CD6-form by enzymatic treatment with alkaline phosphatase resulted in its conversion to the 105-kDa form. Taken together, these results demonstrate the existence of two CD6 molecular forms that are in a dynamic equilibrium and differ only at their degree of phosphorylation: a 105-kDa unphosphorylated form present in resting T cells that changes very rapidly to a 130-kDa phosphorylated form by exposure of cells either to serum or to activators of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号