首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Evoked potentials to tones and clicks were recorded simultaneously from seven points of the auditory cortex and one or two points of the somatosensory cortex in unanesthetized cats. Comparison of evoked potentials to tones of equal loudness in the 250–7000 Hz band showed no common pattern of cortical tonotopic distribution. However, an individual dependence of the components of the evoked potential on pitch and on localization of the recording point exists for each animal. With a change in stimulus intensity the absolute and relative values of these components of the evoked potential vary. The initial positive waves are the most variable; besides the two waves already known a third, intermediate wave, particulary sensitive to loudness, was discovered. The negative wave of the primary response increases proportionally to loudness. Evoked potentials to clicks are more uniform over the auditory cortex and more stable than those to tones. Responses appeared in the somatosensory cortex to loud stimuli, more regularly to clicks than to tones. It is concluded that the parameter of pitch is reflected in the cat cortex as a complex spatially-individual distribution of the amplitude and time parameters of the evoked potentials.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 115–125, March–April, 1975.  相似文献   

3.
Bioelectrical activity of the somatosensory cortex was studied in the Wistar rats with chronic (1.5-2 months) compression of the infraorbital nerve produced by two partial ligations. In 20% of rats spike-slow wave complex and slow waves were observed. Electrostimulation of the skin on the injured nerve side resulted in a considerable increase in the amplitude of early components of the contralaterally evoked potentials in comparison with the non-injured side stimulation in 75% of rats. A decrease in the evoked potential thresholds on the injured nerve stimulation was shown in both hemispheres. In most of the animals a hypersynchronous late component of the evoked potential was observed.  相似文献   

4.
Neuronal pathways for the lingual reflex in the Japanese toad   总被引:1,自引:0,他引:1  
1. Anuran tongue is controlled by visual stimuli for releasing the prey-catching behavior ('snapping') and also by the intra-oral stimuli for eliciting the lingual reflex. To elucidate the neural mechanisms controlling tongue movements, we analyzed the neuronal pathways from the glossopharyngeal (IX) afferents to the hypoglossal (XII) tongue-muscle motoneurons. 2. Field potentials were recorded from the bulbar dorsal surface over the fasciculus solitarius (fsol) to the electrical stimulation of the ipsilateral IX nerve. They were composed of three successive negative waves: S1, S2 and N wave. The S1 and S2 waves followed successive stimuli applied at short intervals (10 ms or less), whereas the N wave was strongly suppressed at intervals shorter than 500 ms. Furthermore, the S1 wave had lower threshold than the S2 wave. 3. Orthodromic action potentials were intra-axonally recorded from IX afferent fibers in the fsol to the ipsilateral IX nerve stimuli. Two peaks found in the latency distribution histogram of these action potentials well coincided with the negative peaks of the S1 and the S2 waves of the simultaneously recorded field potentials. Therefore, the S1 and S2 waves should represent the compound action potentials of two groups of the IX afferent fibers with different conduction velocities. 4. Ipsilateral IX nerve stimuli elicited excitatory postsynaptic potentials (EPSPs) in the tongue-protractor motoneurons (PMNs) and the tongue-retractor motoneurons (RMNs). Inhibitory postsynaptic potentials were not observed. 5. The EPSPs recorded in PMNs had mean onset latencies of 6.4 ms measured from the negative peaks of the S1 wave. The EPSPs were facilitated when paired submaximal stimuli were applied at intervals shorter than 20 ms, but were suppressed at intervals longer than 30 ms. Furthermore, the EPSPs were spatially facilitated when peripherally split two bundles of the IX nerve were simultaneously stimulated. 6. On the other hand, the EPSPs recorded in RMNs had shorter onset latencies, averaging 2.5 ms. In 14 of 43 RMNs, early and late EPSP components could be reliably discriminated. The thresholds for the early EPSP components were as low as those for the S1 waves, whereas for the late EPSP components the thresholds were usually higher than those for the S2 waves.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In the rat, nicotine bitartrate (100 micrograms/kg) by intraperitoneal route provokes modifications of the brain stem auditory evoked potentials. These changes are complex: a) decrease of the amplitude of waves IV and V, probably by fixation on nicotinic type receptors, neuronal serotonin stores being normal; b) increase of the amplitude of waves I, I' and II, more important when endogenous stores are depleted; c) increase in the latency of these waves when serotonin stores are normal.  相似文献   

6.
Multichannel mapping of electrical field on heart ventricle epicardium and the body surface in frogs Rana esculenta and Rana temporaria was performed at periods of the ventricular myocardium depolarization and repolarization. The zone of the epicardium early depolarization is located on epicardium of the ventricle base posterior wall, while the late depolarization zone--on its apex and on the base anterior wall. The total vector of sequence of the ventricle epicardium depolarization is directed from the base to the apex. The zone of the early repolarization is located in the apical area, while that of the late one--in the area of the base. On the frog body surface the cardioelectric field with the cranial zone of negative and the caudal zone of positive potentials is formed before the appearance of the QRS complex on ECG. At the period of the heart ventricle repolarization the zone of the cardioelectric field negative potentials is located in the cranial, while that of the positive ones--in the body surface caudal parts. The cardioelectric field on the frog body surface at the periods of depolarization and repolarization of the ventricle myocardium reflects adequately the projection of sequence of involvement with excitation and of distribution of potentials on epicardium.  相似文献   

7.
Brain-stem auditory evoked potentials (BAEPs) were recorded in 10 common marmosets (Callithrix jacchus) to investigate the effects of recording electrode configurations, stimulus rate, and stimulus frequency on BAEP wave forms and peak latencies. Tone burst stimulations were used to evaluate the effects of pure tone on BAEP wave forms. Five positive peaks superimposed on positive and negative slow potentials were identified in the BAEP recorded at the linkage between the vertex and the dorsal base of the ear ipsilateral to a monaural stimulus. When the reference electrode was placed at the ipsilateral mastoid or the neck, the amplitudes of positive and negative slow potentials and the incidence of wave I increased. There were no significant changes in peak latencies of BAEP waves with changes in stimulus rate from 5 to 20/s. It was possible to record the BAEPs in response to tone burst stimulations at frequencies extending from 0.5 to 99 kHz. Wave I appeared apparently at high stimulus frequencies; while waves III to V, at low frequencies. Wave II was recorded at frequencies ranging from 0.5 to 99 kHz and comprised a superposition of 2 or 3 potentials.  相似文献   

8.
In the developing vertebrate retina, nAChR synapses are among the first to appear. This early cholinergic circuitry plays a key role in generating "retinal waves," spontaneously generated waves of action potentials that sweep across the ganglion cell layer. These retinal waves exist for a short period of time during development when several circuits within the visual system are being established. Here I review the cholinergic circuitry of the developing retina and the role these early circuits play in the development of the retina itself and of retinal projections to the lateral geniculate nucleus of the thalamus.  相似文献   

9.
Multichannel mapping of electrical field on heart ventricle epicardium and the body surface in frogs Rana esculenta and Rana temporaria was performed at periods of the ventricular myocardium depolarization and repolarization. The zone of the epicardium early depolarization is located on epicardium of the ventricle base posterior wall, while the late depolarization zone—on its apex and on the base anterior wall. The total vector of sequence of the ventricle epicardium depolarization is directed from the base to the apex. The zone of the early repolarization is located in the apical area, while that of the late one—in the area of the base. On the frog body surface the cardioelectric field with the cranial zone of negative and the caudal zone of positive potentials is formed before the appearance of the QRS complex on ECG. At the period of the heart ventricle repolarization the zone of the cardioelectric field negative potentials is located in the cranial, while that of the positive ones—in the body surface caudal parts. The cardioelectric field on the frog body surface at the periods of depolarization and repolarization of the ventricle myocardium reflects adequately the projection of sequence of involvement with excitation and of distribution of potentials on epicardium.  相似文献   

10.
The comparative study, when stimulation is increased, of the amplitude changes shown by the negative waves of dorsal root potentials, indicates that the N1 and N2 waves are evoked by A alpha cutaneous afferent, whereas N3 wave is due to A alpha, A beta and perhaps A delta cutaneous afferents. On the other hand, a possible inhibitory action of N1, N2 negative complex on N3 wave is postulated.  相似文献   

11.
Somatosensory evoked potentials in response to stimulation of the posterior tibial nerve at the ankle were recorded during sitting and standing with variable foot positions. During standing a decrease in the amplitude of the early positive component was observed. The deviation of the foot from a horizontal position was associated with an increase in the amplitude of the early negative component. The combined influence of body and foot positions showed a decrease in the amplitude of both early and late components. The standing position induced changes in more components than the varied foot positions. This suggests that maintenance of the standing posture is a more complex task than the maintenance of the foot position itself.  相似文献   

12.
Low-amplitude potentials (10-130 microV) related to the action of a distant branch of the climbing fiber, which elicits complex spikes of the reference Purkinje cell were revealed by means of potential averaging synchronously with complex spikes of Purkinje cells in 10 out of 255 paired records of cerebellar Purkinje cells activity and extracellular field potentials at interelectrode distances of 200-1500 microns. These potential waves had a stable form in independent sets of data. In 3 out of 10 cases, the low-amplitude potentials included a slow (about 100 ms in duration) component. In one case, both test and reference electrodes recorded both simple and complex spikes of different Purkinje cells so that complex spikes of both cells were practically synchronous (conditional probability of complex spikes p = 0.97, onset time difference 0.54 ms). Thus for the first time in cerebellar physiology both simple and complex spikes activity of two Purkinje cells controlled by the same climbing fiber was recorded.  相似文献   

13.
The nature of the principal components of the evoked potential of the general cortex of the turtle forebrain was studied in response to electrical stimulation of the contralateral optic nerve. Comparison of these components with postsynaptic potentials of the neurons of this structure showed that the four fast negative waves of the evoked potential correspond to fast EPSPs, which are independent of one another. The positive wave of the evoked potential is the sum of several IPSPs. The slow negative and, to some extent, the positive wave are a reflection of the slow EPSP. It is shown that early EPSPs are generated on portions of the apical dendrites which are further from the soma than those generating late fast EPSPs and also the IPSP and slow EPSP. Axo-somatic contacts are perhaps also concerned in the generation of the last-named potential.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No.3, pp.261–271, May–June, 1973.  相似文献   

14.
In slices of rat sensorimotor cortex, extracellular field potentials evoked by electrical stimulation of the white matter were recorded at various cortical depths. In order to determine the nature of the various components, experiments were performed in 3 situations: in a control perfusion medium, in a solution in which calcium ions have been replaced by magnesium ions to block synaptic transmission, and in cortices in which the pyramidal neurons of layer V had been previously induced to degenerate.In the control situation, the response at or near the surface was a positive-negative wave. From a depth of about 150 μm downwards, the evoked response consisted usually of 6 successive components, 3 positive-going, P11, P3 and P6 and 3 negative-going, N2, N4 and N5. P1 and N4 were apparent in superficial layers only. The amplitude of the remaining waves variable in the cortex but all diminished near the white matter.The early part of the surface positive wave arises from a non-synaptic activation of superficial elements, probably apical dendrites. The late part of the surface positive wave and the negative wave are due to the synaptic activation of neurons located probably in layer III.The large negative wave N2 represents principally the antidromic activation of cell bodies and possibly of proximal dendrites of neurons situated in layers III, IV and V, through the compound action potentials of afferent and efferent fibers may contribute to a reduced part to its generation.The late components N4 to P6 are post-synaptic responses. The negative component N5, the amplitude of which is largest in layers III and IV, represents excitatory responses of neurons located at various depths in the cortex. The nature of the positive component P6 is less clear, although the underlying mechanism might be inhibitory synaptic potentials.  相似文献   

15.
Slow negative (N) and slow positive (P) waves are frequently produced in the posterior epidural space at the lumbosacral enlargement by epidural stimulation of the rostral part of human spinal cord. The production of these slow potentials are thought to be responsible for analgesia at the stimulated segment as well as below that level. In order to define the spinal tract which mediates these slow potentials, we stimulated directly or from the epidural space the dorsal, dorsolateral, lateral and ventral columns at the cervical or thoracic level, and epidurally recorded spinal cord potentials (des.SCPs) at the lumbosacral enlargement in 7 patients who underwent spine or spinal cord surgery. The des.SCPs recorded in the lumbosacral enlargement consisted of polyphasic spike potentials followed by slow N and P waves. At a near threshold level of stimulus intensity the slow N and P potentials were consistently elicited only by stimulation of the dorsal column. The slow waves were also produced by intense stimulation of other tracts, but remained significantly (P < 0.05−P <0.01) smaller than those evoked by dorsal column stimulation when compared at the same stimulus intensity. Moreover, the slow P wave could not be elicited even by intense stimulation (10 times the threshold strength for the initial spike potentials) of the ventral column. Thus, the results suggest that the slow N and P waves are mostly mediated by the antidromic impulses descending through the dorsal column.  相似文献   

16.
Pacemaker potentials were recorded in situ from myenteric interstitial cells of Cajal (ICC-MY) in the murine small intestine. The nature of the two components of pacemaker potentials (upstroke and plateau) were investigated and compared with slow waves recorded from circular muscle cells. Pacemaker potentials and slow waves were not blocked by nifedipine (3 µM). In the presence of nifedipine, mibefradil, a voltage-dependent Ca2+ channel blocker, reduced the amplitude, frequency, and rate of rise of upstroke depolarization (dV/dtmax) of pacemaker potentials and slow waves in a dose-dependent manner (1–30 µM). Mibefradil (30 µM) changed the pattern of pacemaker potentials from rapidly rising, high-frequency events to slowly depolarizing, low-frequency events with considerable membrane noise (unitary potentials) between pacemaker potentials. Caffeine (3 mM) abolished pacemaker potentials in the presence of mibefradil. Pinacidil (10 µM), an ATP-sensitive K+ channel opener, hyperpolarized ICC-MY and increased the amplitude and dV/dtmax without affecting frequency. Pinacidil hyperpolarized smooth muscle cells and attenuated the amplitude and dV/dtmax of slow waves without affecting frequency. The effects of pinacidil were blocked by glibenclamide (10 µM). These data suggest that slow waves are electrotonic potentials driven by pacemaker potentials. The upstroke component of pacemaker potentials is due to activation of dihydropyridine-resistant Ca2+ channels, and this depolarization entrains pacemaker activity to create the plateau potential. The plateau potential may be due to summation of unitary potentials generated by individual or small groups of pacemaker units in ICC-MY. Entrainment of unitary potentials appears to depend on Ca2+ entry during upstroke depolarization. pacemaker activity; slow waves; gastrointestinal motility; calcium channel  相似文献   

17.
Head-restrained rats were conditioned to perform a CNV task: to press a lever in response to an imperative auditory stimulus (S2) given 1.5 sec after a warning stimulus (S1) for a drop of jelly food. With an electrode on the surface of the forelimb cortex, (1) sharp wave complexes immediately after S1 and S2, and (2) a negative slow potential (SP) between S1 and S2, on which early and late components were discernible, were recorded in association with performance of this task. With the electrode at a depth of 2 mm in the same cortical area, the corresponding field potential showed a long-lasting positive shift in addition to the components of the surface potential. These monopolar recordings were obtained with respect to a common reference at the frontal sinus. The surface-minus-depth potential (the transcortical potential), consequently, showed a surface-negative tonic wave, confirming Pirch's report (1980). During extinction of this conditioning, the SP between S1 and S2 disappeared, while the sharp waves following S1 and S2 remained with little modification, suggesting that the sharp waves are a kind of evoked potential (EP) elicited by the stimuli.Recording from 5 surface electrodes set in an array over the left hemisphere contralateral to the used forelimb during development of the conditioning revealed not only a spatial distribution of the SP but also a transition of the potentials. As the conditioning progressed, the negativity of the early SP component tended to increase, while that of the late component tended to decrease and was confined to the sensorimotor cortex. The similarities of the rat cortical surface potentials to the human and monkey CNV in their wave form and function suggests that the rat brain can produce electrical activity analogous to the human CNV.  相似文献   

18.
Fifty-two sets of cortical somatosensory evoked potentials (SEPs) were recorded from 23 normal children between the ages of 1 day and 13 weeks with median nerve stimulation. Two bandpass settings 5–1500 Hz and 30–3000 Hz were used; rate of stimulation was 1.1 Hz and sweep-time was 200 msec. The state of wakefulness was documented, but SEPs were obtained and evaluated independently of the child being awake or asleep during the recording. SEPs were present in every recording. The bandpass 30–3000 Hz best differentiated positive and negative early potentials. The bandpass 5–1500 Hz was helpful in some cases, as late slow waves were recorded with this setting. Normative data were established. Mean values were calculated for 3 age groups: 0–2 weeks, 2–6 weeks and 7–13 weeks. P15 and N20 were the first components seen in the newborn, with the P22 becoming the major component by 2–3 weeks of age. The study indicates that maturation of the somatosensory system is fastest during the first 3 weeks of life.  相似文献   

19.
In order to investigate the modulation of somatosensory processing during stance and locomotion, sural nerve somatosensory evoked potentials were recorded during both stance and different phases of the step-cycle.Characteristic sequences of negative-positive waves were elicited, consisting of an early component, N40, presumably of subcortical origin, followed by a P50-N80-P220 complex of cortical origin. The N40 and N40-P50 components had similar amplitudes in both gait and stance. However, the P50-N80 component was attenuated whereas the N80-P220 complex became biphasic during gait. Within the step-cycle, amplitudes of the cortical components P50-N80 and N80-P110 were larger prior to footfall and smaller at the beginning of the support phase.The results demonstrate that locomotion produces a modulatory effect on somatosensory input at a cortical level. Within the step-cycle, excitability of the somatosensory cortex is increased during the middle and late swing phases and decreased during the support phase. Such modulation may contribute to an improved detection of foot contact at touchdown.  相似文献   

20.
A correlation between some characteristics of the visual evoked potentials and individual personality traits (by the Kettell scale) was revealed in 40 healthy subjects when they recognized facial expressions of anger and fear. As compared to emotionally stable subjects, emotionally unstable subjects had shorter latencies of evoked potentials and suppressed late negativity in the occipital and temporal areas. In contrast, amplitude of these waves in the frontal areas was increased. In emotionally stable group of subjects differences in the evoked potentials related to emotional expressions were evident throughout the whole signal processing beginning from the early sensory stage (P1 wave). In emotionally unstable group differences in the evoked potentials related to recognized emotional expressions developed later. Sensitivity of the evoked potentials to emotional salience of faces was also more pronounced in the emotionally stable group. The involvement of the frontal cortex, amygdala, and the anterior cingulate cortex in the development of individual features of recognition of facial expressions of anger and fear is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号