首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP (cAMP) blocks Raf-1 activation by stimulating its phosphorylation on serine 43 (Ser43), serine 233 (Ser233), and serine 259 (Ser259). We show here that phosphorylation of all three sites blocks Raf-1 binding to Ras.GTP in vivo and that cAMP stimulates binding of 14-3-3 proteins to Ser233 and Ser259. We also show that Raf-1 and protein kinase A (PKA) form a complex in vivo that is disrupted by cAMP and that ablation of PKA by use of small interfering RNA blocks phosphorylation by cAMP. The ability of PKA to block Raf-1 activation is ablated by the PKA inhibitor H89. These studies suggest that Raf-1 and cAMP form a signaling complex in cells. Upon activation of PKA, Raf-1 is phosphorylated and 14-3-3 binds, blocking Raf-1 recruitment to the plasma membrane and preventing its activation.  相似文献   

2.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

3.
The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo. Serine 43 phosphorylation decreased the binding to Ras in serum-starved but not in mitogen-stimulated cells. However, the kinase activity of a RafS43A mutant was fully inhibited by PKA. Mutation of serine 259 increased the basal Raf-1 activity and rendered it largely resistant to inhibition by PKA. cAMP increased Raf-1 serine 259 phosphorylation in a PKA-dependent manner with kinetics that correlated with ERK deactivation. PKA also decreased Raf-1 serine 338 phosphorylation of Raf-1, previously shown to be required for Raf-1 activation. Serine 338 phosphorylation of a RafS259A mutant was unaffected by PKA. Using RafS259 mutants we also demonstrate that Raf-1 is the sole target for PKA inhibition of ERK and ERK-induced gene expression, and that Raf-1 inhibition is mediated mainly through serine 259 phosphorylation.  相似文献   

4.
Because cAMP exerts opposite effects on cell proliferation in different cell types, we undertook to study its effect on the mitogen-activated protein kinase (MAPK) pathway in three cell lines (Rat-1, Swiss-3T3, and COS-7) chosen for their different mitogenic responses to cAMP. We measured the effect of cAMP on MAPK, MEK, and Raf-1 activities after stimulation by agonists acting through a tyrosine kinase receptor (epidermal growth factor) or a G protein-coupled receptor (lysophosphatidic acid). In Rat-1 cells we found that cAMP strongly inhibited all three activities (MAPK, MEK, and Raf-1), in good agreement with its effect on cell proliferation in these cells. In Swiss-3T3 and COS-7 cells, on the contrary, cAMP did not inhibit epidermal growth factor- and lysophosphatidic acid-induced stimulation of MAPK and MEK activities, and even stimulated MAPK activity slightly on its own. Again these results are in good agreement with the proliferative effect of cAMP in Swiss-3T3 cells. Raf-1 activity on the hand, was inhibited by cAMP in Swiss-3T3 and COS-7 as it was in Rat-1 cells. This result indicates that signaling pathways in Swiss-3T3 and COS-7 cells can activate MEK and MAPK in a Raf-1-independent and cAMP-insensitive manner. Our results add to growing evidence for the existence of Ras- and/or Raf-1-independent pathways leading to MEK and MAPK activation.  相似文献   

5.
Activation of the extracellular signal-regulated kinase (ERK) 1/2 cascade by polypeptide growth factors is tightly coupled to adhesion to extracellular matrix in nontransformed cells. Raf-1, the initial kinase in this cascade, is intricately regulated by phosphorylation, localization, and molecular interactions. We investigated the complex interactions between Raf-1, protein kinase A (PKA), and p21-activated kinase (PAK) to determine their roles in the adhesion dependence of signaling from epidermal growth factor (EGF) to ERK. We conclude that Raf-1 phosphorylation on serine 338 (S338) is a critical step that is inhibited in suspended cells. Restoration of phosphorylation at S338, either by expression of highly active PAK or by expression of an S338 phospho-mimetic Raf-1 mutation, led to a partial rescue of ERK activation in suspended cells. Raf-1 inhibition in suspension was not due to excessive negative regulation on inhibitory sites S43 and S259, as these serines were largely dephosphorylated in suspended cells. Finally, strong phosphorylation of Raf-1 S338 provided resistance to PKA-mediated inhibition of ERK activation. Phosphorylation at Raf-1 S43 and S259 by PKA only weakly inhibited EGF activation of Raf-1 and ERK when cells maintained high Raf-1 S338 phosphorylation.  相似文献   

6.
Full activation of Raf-1 requires the interaction of its CRD with Ras. The serine/threonine-rich region, CR2, of Raf-1 was implicated in Raf-1 regulation, but the underlying mechanism was unclear. Here we show that CRD loses its Ras-binding activity when expressed in connection with CR2, suggesting that CR2 masks CRD. This masking effect is abolished by substitution of Asp or Ala for Ser-259, a growth factor- and TPA-induced phosphorylation site in CR2. Treatment of COS-7 cells expressing Ha-Ras(Val-12) and Raf-1 with TPA enhances the Ha-Ras(Val-12)-dependent Raf-1 kinase activity. In contrast, the Ha-Ras(Val-12)-dependent activities of the Raf-1(S259D) and Raf-1(S259A) mutants are comparable to that of wild-type Raf-1 stimulated by both Ha-Ras(Val-12) and TPA and cannot be further stimulated by TPA treatment. These results suggest that the in vivo phosphorylation of Ser-259 may comprise a crucial step for Ras-dependent Raf-1 activation by unmasking CRD and promoting its association with Ras.  相似文献   

7.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

8.
Growth factor stimulation of the mitogen-activated protein (MAP) kinase pathway in fibroblasts is inhibited by cyclic AMP (cAMP) as a result of inhibition of Raf-1. In contrast, cAMP inhibits neither nerve growth factor-induced MAP kinase activation nor differentiation in PC12 pheochromocytoma cells. Instead, in PC12 cells cAMP activates MAP kinase. Since one of the major differences between the Ras/Raf/MAP kinase cascades of these cell types is the expression of B-Raf in PC12 cells, we compared the effects of cAMP on Raf-1 and B-Raf. In PC12 cells maintained in serum-containing medium, B-Raf was refractory to inhibition by cAMP, whereas Raf-1 was effectively inhibited. In contrast, both B-Raf and Raf-1 were inhibited by cAMP in serum-starved PC12 cells. The effect of cAMP is thus dependent upon growth conditions, with B-Raf being resistant to cAMP inhibition in the presence of serum. These results were extended by studies of Rat-1 fibroblasts into which B-Raf had been introduced by transfection. As in PC12 cells, B-Raf was resistant to inhibition by cAMP in the presence of serum, whereas Raf-1 was effectively inhibited. In addition, the expression of B-Raf rendered Rat-1 cells resistant to the inhibitory effects of cAMP on both growth factor-induced activation of MAP kinase and mitogenesis. These results indicate that Raf-1 and B-Raf are differentially sensitive to inhibition by cAMP and that B-Raf expression can contribute to cell type-specific differences in the regulation of the MAP kinase pathway. In contrast to the situation in PC12 cells, cAMP by itself did not stimulate MAP kinase in B-Raf-expressing Rat-1 cells. The activation of MAP kinase by cAMP in PC12 cells was inhibited by the expression of a dominant negative Ras mutant, indicating that cAMP acts on a target upstream of Ras. Thus, it appears that a signaling component upstream of Ras is also require for cAMP stimulation of MAP kinase in PC12 cells.  相似文献   

9.
Erythropoietin mediates the rapid phosphorylation of Raf-1 in the murine cell lines HCD-57 and FDC-P1/ER, which proliferate in response to this cytokine. Phosphorylation occurs at both serine and tyrosine residues and as such is similar to the Raf-1 phosphorylation seen after interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor, and interleukin-2 stimulation in other murine cell lines. Such data suggest that these growth factors may share a common mechanism(s) of Raf-1 phosphorylation. Furthermore, in association with Raf-1 phosphorylation, erythropoietin induces a 2-3-fold increase in Raf-1 kinase activity as measured in immune complex kinase assays in vitro. Finally, a c-raf antisense oligodeoxyribonucleotide, which specifically decreases intracellular Raf-1 levels, also substantially inhibits both erythropoietin and IL-3-directed DNA synthesis. Together, these results provide evidence that activated Raf-1 is a necessary component of erythropoietin and IL-3 growth signaling pathways.  相似文献   

10.
The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.  相似文献   

11.
Growth factors activate Raf-1 by engaging a complex program, which requires Ras binding, membrane recruitment, and phosphorylation of Raf-1. The present study employs the microtubule-depolymerizing drug nocodazole as an alternative approach to explore the mechanisms of Raf activation. Incubation of cells with nocodazole leads to activation of Pak1/2, kinases downstream of small GTPases Rac/Cdc42, which have been previously indicated to phosphorylate Raf-1 Ser(338). Nocodazole-induced stimulation of Raf-1 is augmented by co-expression of small GTPases Rac/Cdc42 and Pak1/2. Dominant negative mutants of these proteins block activation of Raf-1 by nocodazole, but not by epidermal growth factor (EGF). Thus, our studies define Rac/Cdc42/Pak as a module upstream of Raf-1 during its activation by microtubule disruption. Although it is Ras-independent, nocodazole-induced activation of Raf-1 appears to involve the amino-terminal regulatory region in which the integrity of the Ras binding domain is required. Surprisingly, the Raf zinc finger mutation (C165S/C168S) causes a robust activation of Raf-1 by nocodazole, whereas it diminishes Ras-dependent activation of Raf-1. We also show that mutation of residues Ser(338) to Ala or Tyr(340)-Tyr(341) to Phe-Phe immediately amino-terminal to the catalytic domain abrogates activation of both the wild type and zinc finger mutant Raf by both EGF/4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole. Finally, an in vitro kinase assay demonstrates that the zinc finger mutant serves as a better substrate of Pak1 than the wild type Raf-1. Collectively, our results indicate that 1) the zinc finger exerts an inhibitory effect on Raf-1 activation, probably by preventing phosphorylation of (338)SSYY(341); 2) such inhibition is first overcome by an unknown factor binding in place of Ras-GTP to the amino-terminal regulatory region in response to nocodazole; and 3) EGF and nocodazole utilize different kinases to phosphorylate Ser(338), an event crucial for Raf activation.  相似文献   

12.
Negative regulation of Raf-1 by phosphorylation of serine 621.   总被引:13,自引:6,他引:7       下载免费PDF全文
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

13.
Recently we isolated Rad24, a 14-3-3 homologue, which is essential for DNA damage checkpoint, as a Raf-1 interacting protein by screening a Schizosaccharomyces pombe (S. pombe) cDNA library. Raf-1 was also found to recognize Cdc25 that is sequestered and inactivated by Rad24. In the present study, experiments were performed to determine the effect of overexpression of Raf-1 proteins on asynchronously growing S. pombe cells. The overexpression of Rad24 induced elongated cell morphology and reduction in growth rate, resulting in cell cycle arrest while the overexpression of catalytically active Raf-1 led to a decrease in cell size at division in S. pombe. However, the active Raf-1 failed to rescue the growth arrest induced by Rad24 overexpression. In addition, the cells carrying catalytically active Raf-1 were significantly more radiosensitive than those from a normal control as assessed by ultraviolet sensitivity assay, suggesting that constitutive overproduction of Raf-1 kinase can revert DNA replication checkpoint arrest caused by UV irradiation. Taken together, these data suggest that Raf-1 may interfere with the role of Rad24 by competing with Rad24 for binding to Cdc25 in DNA repair, bypassing the checkpoint pathway through Cdc25 activation.  相似文献   

14.
Survival after stress requires the precise orchestration of cell-signalling events to ensure that biosynthetic processes are alerted and cell survival pathways are initiated. Here we show that Bag1, a co-chaperone for heat-shock protein 70 (Hsp70), coordinates signals for cell growth in response to cell stress, by downregulating the activity of Raf-1 kinase. Raf-1 and Hsp70 compete for binding to Bag1, such that Bag1 binds to and activates Raf-1, subsequently activating the downstream extracellular signal-related kinases (ERKs). When levels of Hsp70 are elevated after heat shock, or in cells conditionally overexpressing Hsp70, Bag1-Raf-1 is displaced by Bag1-Hsp70, and DNA synthesis is arrested. Mutants Bag1C204A and Bag1E208A, which cannot bind Hsp70, constitutively activate Raf-1/ERK kinases but are unaffected by Hsp70; consequently neither Bag1-Raf-1 nor DNA synthesis is negatively affected during heat shock. Likewise, mutants Hsp70F245S, Hsp70R262W and Hsp70L282R, which retain chaperone activity but do not bind to Bag1, fail to repress Bag1 activation of Raf-1/ERK kinase. We propose that Bag1 functions in the heat-shock response to coordinate cell growth signals and mitogenesis, and that Hsp70 functions as a sensor in stress signalling.  相似文献   

15.
Rheb is a recently described member of the Ras family that was originally identified as an immediate-early gene in brain but is also widely expressed in other tissues. Here we demonstrate that Rheb interacts with and appears to regulate Raf-1 kinase, an essential component of the H-Ras signaling pathway. In direct contrast to H-Ras, however, the interaction of Rheb with Raf-1 is potentiated by growth factors in combination with agents that increase cyclic AMP (cAMP) levels. Protein kinase A-dependent phosphorylation of serine 43 within the regulatory domain of Raf-1 reciprocally potentiates its interaction with Rheb and decreases its interaction with H-Ras. A single amino acid in the G2 effector domain is critical for the differential properties of Rheb. Since Rheb is an immediate-early gene, our studies suggest that Rheb functions in concert with H-Ras to dynamically integrate cAMP and growth factor signaling.  相似文献   

16.
The Ras-Raf-MAPK cascade is a key growth-signaling pathway and its uncontrolled activation results in cell transformation. Although the general features of the signal transmission along the cascade are reasonably defined, the mechanisms underlying Raf activation remain incompletely understood. Here, we show that Raf-1 dephosphorylation, primarily at epidermal growth factor (EGF)-induced sites, abolishes Raf-1 kinase activity. Using mass spectrometry, we identified five novel in vivo Raf-1 phosphorylation sites, one of which, S471, is located in subdomain VIB of Raf-1 kinase domain. Mutational analyses demonstrated that Raf-1 S471 is critical for Raf-1 kinase activity and for its interaction with mitogen-activated protein kinase kinase (MEK). Similarly, mutation of the corresponding B-Raf site, S578, resulted in an inactive kinase, suggesting that the same Raf-1 and B-Raf phosphorylation is needed for Raf kinase activation. Importantly, the naturally occurring, cancer-associated B-Raf activating mutation V599E suppressed the S578A mutation, suggesting that introducing a charged residue at this region eliminates the need for an activating phosphorylation. Our results demonstrate an essential role of specific EGF-induced Raf-1 phosphorylation sites in Raf-1 activation, identify Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities, and point to the possibility that the V599E mutation activates B-Raf by mimicking a phosphorylation at the S578 site.  相似文献   

17.
The Ras-Raf-mitogen-activated protein kinase cascade is a key growth-signaling pathway, which uncontrolled activation results in transformation. Although the exact mechanisms underlying Raf-1 regulation remain incompletely understood, phosphorylation has been proposed to play a critical role in this regulation. We report here three novel epidermal growth factor-induced in vivo Raf-1 phosphorylation sites that mediate positive feedback Raf-1 regulation. Using mass spectrometry, we identified Raf-1 phosphorylation on three SP motif sites: S289/S296/S301 and confirmed their identity using two-dimensional-phosphopeptide mapping and phosphospecific antibodies. These sites were phosphorylated by extracellular signal-regulated kinase (ERK)-1 in vitro, and their phosphorylation in vivo was dependent on endogenous ERK activity. Functionally, ERK-1 expression sustains Raf-1 activation in a manner dependent on Raf-1 phosphorylation on the identified sites, and S289/296/301A substitution markedly decreases the in vivo activity of Raf-1 S259A. Importantly, the ERK-phosphorylated Raf-1 pool has 4 times higher specific kinase activity than total Raf-1, and its phosphopeptide composition is similar to that of the general Raf-1 population, suggesting that the preexisting, phosphorylated Raf-1, representing the activatable Raf-1 pool, is the Raf-1 subpopulation targeted by ERK. Our study describes the identification of new in vivo Raf-1 phosphorylation sites targeted by ERK and provides a novel mechanism for a positive feedback Raf-1 regulation.  相似文献   

18.
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.  相似文献   

19.
The p21-activated kinase, Pak, has recently been shown to phosphorylate Raf-1 on serine 338 (S338), a critical regulatory residue. The specificity requirements for Pak-mediated phosphorylation of S338 were examined by substitution analysis of Raf-1 peptides and conserved region 3 (CR3) proteins. Phosphorylation was found to be very sensitive to alterations in amino acid side chains proximal to S338. Loss of N-terminal arginines resulted in decreased peptide phosphorylation while loss of these residues, as well as C-terminal glutamates and bulky C-terminal hydrophobic residues, decreased phosphorylation of the CR3 protein. Phosphorylation of Raf-1 on tyrosine 341 is significant in epidermal growth factor- and Src-mediated signaling, suggesting that cooperativity may exist between Pak and Src phosphorylation of Raf-1. Purified Pak and Src were found not to be cooperative in phosphorylating peptides or purified CR3 protein. However, the phosphorylation of Raf-1 S338 by Pak was increased in the presence of Src. The complexity of this signaling module could thus account for the different levels of Raf-1 activation required for fulfillment of different biological roles within the cell.  相似文献   

20.
Mechanism of inhibition of Raf-1 by protein kinase A.   总被引:31,自引:14,他引:17       下载免费PDF全文
The cytoplasmic Raf-1 kinase is essential for mitogenic signalling by growth factors, which couple to tyrosine kinases, and by tumor-promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate, which activate protein kinase C (PKC). Signalling by the Raf-1 kinase can be blocked by activation of the cyclic AMP (cAMP)-dependent protein kinase A (PKA). The molecular mechanism of this inhibition is not precisely known but has been suggested to involve attenuation of Raf-1 binding to Ras. Using purified proteins, we show that in addition to weakening the interaction of Raf-1 with Ras, PKA can inhibit Raf-1 function directly via phosphorylation of the Raf-1 kinase domain. Phosphorylation by PKA interferes with the activation of Raf-1 by either PKC alpha or the tyrosine kinase Lck and even can downregulate the kinase activity of Raf-1 previously activated by PKC alpha or amino-terminal truncation. This type of inhibition can be dissociated from the ability of Raf-1 to associate with Ras, since (i) the isolated Raf-1 kinase domain, which lacks the Ras binding domain, is still susceptible to inhibition by PKA, (ii) phosphorylation of Raf-1 by PKC alpha alleviates the PKA-induced reduction of Ras binding but does not prevent the downregulation of Raf-1 kinase activity by PKA and (iii) cAMP agonists antagonize transformation by v-Raf, which is Ras independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号