共查询到20条相似文献,搜索用时 79 毫秒
1.
Temperature dependence of the surface topography in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine multibilayers 总被引:1,自引:0,他引:1 下载免费PDF全文
Simple lipid binary systems are intensively used to understand the formation of domains in biological membranes. The size of individual domains present in the gel/fluid coexistence region of single supported bilayers, determined by atomic force microscopy (AFM), generally exceeds by two to three orders of magnitude that estimated from multibilayers membranes by indirect spectroscopic methods. In this article, the topography of equimolar dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) multibilayers, made of two superimposed bilayers supported on mica surface, was studied by AFM in a temperature range from room temperature to 45 degrees C. In the gel/fluid phase coexistence region the size of domains, between approximately 100 nm and a few micrometers, was of the same order for the first bilayer facing the mica and the top bilayer facing the buffer. The gel to fluid phase separation temperature of the first bilayer, however, could be increased by up to 8 degrees C, most likely as a function of the buffer layer thickness that separated it from the mica. Topography of the top bilayer revealed the presence of lipids in ripple phase up to 38-40 degrees C. Above this temperature, a pattern characteristic of the coexistence of fluid and gel domains was observed. These data show that difference in the size of lipid domains given by AFM and spectroscopy can hardly be attributed to the use of multibilayers models in spectroscopy experiments. They also provide a direct evidence for metastable ripple phase transformation into a gel/fluid phase separated structure upon heating. 相似文献
2.
Temperature dependence of the ripple structure in dimyristoylphosphatidylcholine studied by synchrotron X-ray small-angle diffraction 总被引:2,自引:0,他引:2
The ripple structure of 1,2-dimyristoyl-L-phosphatidylcholine (DMPC) multibilayer containing excess water (60 wt%) was studied by synchrotron X-ray small-angle diffraction. The (0,1) spacing which corresponds to the ripple repeat distance depends on temperature: At 13 degrees C the (0,1) spacing is 14.15 nm, the spacing decreases at higher temperatures and reaches 12.1 nm at 23.5 degrees C, just below the main transition temperature. The spacing is in good agreement between heating process and cooling process except for the supercooling region. The result suggests that the rearrangement of the ripple structure takes place during temperature change successively. The Landau-de Gennes free energy equation explains well the temperature dependence of the ripple repeat distance. 相似文献
3.
4.
Kinetics of the barotropic ripple (P beta'')/lamellar liquid crystal (L alpha) phase transition in fully hydrated dimyristoylphosphatidylcholine (DMPC) monitored by time-resolved x-ray diffraction. 下载免费PDF全文
We present here the first study of the use of a pressure-jump to induce the ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The transition was monitored by using time-resolved x-ray diffraction (TRXRD). Applying a pressure-jump from atmospheric to 11.3 MPa (1640 psig, 111.6 atm) in 2.5 s induces the L alpha to P beta' phase transition which takes place in two stages. The lamellar repeat spacing initially increases from a value of 66.0 +/- 0.1 A (n = 4) to a maximum value of 70.3 +/- 0.8 A (n = 4) after 10 s and after a further 100-150 s decreases slightly to 68.5 +/- 0.3 A (n = 4). The reverse transition takes place following a pressure jump in 5.5 s from 11.3 MPa to atmospheric pressure. Again, the transition occurs in two stages with the repeat spacing steadily decreasing from an initial value of 68.5 +/- 0.3 A (n = 3) to a minimum value of 66.6 +/- 0.3 A (n = 3) after 50 s and then increasing by approximately 0.5 A over a period of 100 s. The transition temperature increases linearly with pressure up to 14.1 MPa in accordance with the Clapeyron relation, giving a dT/dP value of 0.285 degrees C/MPa (28.5 degrees C/kbar) and an associated volume change of 40 microliters/g. A dynamic compressibility of 0.13 +/- 0.01 A/MPa has been determined for the L alpha phase. This value is compared with the equilibrium compressibilities of bilayer and nonbilayer phases reported in the literature. The results suggest testable mechanisms for the pressure-induced transition involving changes in periodicity, phase hydration, chain order, and orientation. A more complete understanding of the transition mechanism will require improvement in detector spatial resolution and sensitivity, and data on the pressure sensitivity of phase hydration. 相似文献
5.
Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering 下载免费PDF全文
Fully hydrated dipalmitoylphosphatidylcholine (DPPC) undergoes liquid crystalline to metastable Pβ, phase transition in cooling. A small angle x-ray scattering study has been performed for obtaining further evidence about the structure of this phase. From a high-resolution observation of x-ray diffraction profiles, a distinct multipeak pattern has become obvious. Among them the (01) reflection in the secondary ripple structure is identified clearly. There are peaks assigned straightforwardly to (10) and (20) reflections in the primary ripple structure and peaks assigned to (10) and (20) reflections in the secondary ripple structure. Therefore the multipeak pattern is due to superposition of the reflections cause by the primary and secondary ripple structures. The lattice parameters are estimated as follows: for the primary ripple structure a = 7.09 nm, b = 13.64 nm, and γ = 95°, and for the secondary ripple structure a = 8.2 nm, b = 26.6 nm, and γ = 90°. The lattice parameters thus obtained for the secondary ripple structure are not conclusive, however. The hydrocarbon chains in the primary ripple structure have been reported as being tilted against the bilayer plane and, on the other hand, the hydrocarbon chains in the secondary ripple structure are likely to be perpendicular to the bilayer plane. This fact seems to be related to a sequential mechanism of phase transitions. On heating from the Lβ, phase where the hydrocarbon chains are tilted the primary ripple structure having tilted hydrocarbon chains takes place and on cooling from the Lα phase where the hydrocarbon chains are not tilted the secondary ripple structure with untilted chains tends to be stabilized. It appears that the truly metastable ripple phase is expressed by the second ripple structure although in the course of the actual cooling transition both the secondary and primary ripple structures form and coexist. 相似文献
6.
Adsorbed to a rigid substrate, dimyristoylphosphatidylcholine multibilayers attain full hydration in all mesophases. 下载免费PDF全文
J Katsaras 《Biophysical journal》1998,75(5):2157-2162
Whether hydrated from vapor or immersed in liquid water, aligned multibilayers of dimyristoylphosphatidylcholine adsorbed to a single mica "substrate" are shown by neutron diffraction to hydrate in all mesophases (e.g., Lbeta', Pbeta', and Lalpha) to the same extent as their liposomal counterparts suspended in liquid water. These data clearly demonstrate that the commonly accepted vapor pressure paradox does not exist. 相似文献
7.
X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. 总被引:11,自引:7,他引:4 下载免费PDF全文
J F Nagle R Zhang S Tristram-Nagle W Sun H I Petrache R M Suter 《Biophysical journal》1996,70(3):1419-1431
Bilayer form factors obtained from x-ray scattering data taken with high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of dipalmitoylphosphatidylcholine at 50 degrees C under varying osmotic pressure. Artifacts in the magnitudes of the form factors due to liquid crystalline fluctuations have been eliminated by using modified Caillé theory. The Caillé fluctuation parameter eta 1 increases systematically with increasing lamellar D spacing and this explains why some higher order peaks are unobservable for the larger D spacings. The corrected form factors fall on one smooth continuous transform F(q); this shows that the bilayer does not change shape as D decreases from 67.2 A (fully hydrated) to 60.9 A. The distance between headgroup peaks is obtained from Fourier reconstruction of samples with four orders of diffraction and from electron density models that use 38 independent form factors. By combining these results with previous gel phase results, area AF per lipid molecule and other structural quantities are obtained for the fluid L alpha phase. Comparison with results that we derived from previous neutron diffraction data is excellent, and we conclude from diffraction studies that AF = 62.9 +/- 1.3 A2, which is in excellent agreement with a previous estimate from NMR data. 相似文献
8.
Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer. 下载免费PDF全文
We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along the bilayer normal and the interlamellar spacing and electron density profile were in very good agreement with neutron and x-ray diffraction results. The area per lipid and the details of the in-plane hydrocarbon chain structure were in excellent agreement with wide-angle x-ray diffraction results. The only significant deviation is that the chains met in a pleated arrangement at the bilayer center, although they should be parallel. Novel discoveries made in the present work include the observation of a bimodal headgroup orientational distribution. Furthermore, we found that there are a significant number of gauche conformations near the ends of the hydrocarbon chains and, in addition to verifying a previous suggestion that there is partial rotational ordering in the hydrocarbon chains, that the two chains in a given molecule are inequivalent with respect to rotations. Finally, we have investigated the lipid/water interface and found that the water penetrates beneath the headgroups, but not as far as the carbonyl groups, that the phosphates are strongly hydrated almost exclusively at the nonesterified oxygen atoms, and that the hydration of the ammonium groups is more diffuse, with some water molecules concentrated in the grooves between the methyl groups. 相似文献
9.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids. 相似文献
10.
The thermotropic phase behavior of cholesterol monohydrate in water was investigated by differential scanning calorimetry, polarizing light microscopy, and x-ray diffraction. In contrast to anhydrous cholesterol which undergoes a polymorphic crystalline transition at 39 degrees C and a crystalline to liquid transition at 151 degrees C, the closed system of cholesterol monohydrate and water exhibited three reversible endothermic transitions at 86, 123, and 157 degrees C. At 86 degrees C, cholesterol monohydrate loses its water of hydration, forming the high temperature polymorph of anhydrous cholesterol. At least 24 hours were required for re-hydration of cholesterol and the rate of hydration was dependent on the polymorphic crystalline form of anhydrous cholesterol. At 123 degrees C, anhydrous crystalline cholesterol in the presence of excess water undergoes a sharp transition to a birefringent liquid crystalline phase of smectic texture. The x-ray diffraction pattern obtained from this phase contained two sharp low-angle reflections at 37.4 and 18.7 A and a diffuse wide-angle reflection centered at 5.7 A, indicating a layered smectic type of liquid crystalline structure with each layer being two cholesterol molecules thick. The liquid crystalline phase is stable over the temperature range of 123 to 157 degrees C before melting to a liquid dispersed in water. The observation of a smectic liquid crystalline phase for hydrated cholesterol correlates with its high surface activity and helps to explain its ability to exist in high concentrations in biological membranes. 相似文献
11.
X-ray data are presented for the benchmark dipalmitoylphosphatidylcholine lipid bilayer in the most biologically relevant state in which the bilayers are fully hydrated and in the fluid (liquid-crystalline) phase. Form factors F(q(z)) are obtained from a combination of two sample preparations, oriented stacks of bilayers for q(z) extending to 0.85 A(-1) and unilamellar vesicles for smaller q(z). Modeling obtains the electron density profile and values for the area per molecule, for the locations of the component groups, and for the different types of thicknesses of the bilayer, such as the hydrocarbon thickness and the steric thickness. 相似文献
12.
Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. 总被引:3,自引:14,他引:3 下载免费PDF全文
X-ray diffraction intensities for lamellar repeats, h = 1 to 7, and wide-angle x-ray scattering were measured for the gel phase of fully hydrated dipalmitoylphosphatidylcholine. A hybrid model, which represents the electron density along the lamellar repeat direction as a continuous function composed of constant strips and superimposed Gaussians, is defined. The data were used to determine the best parameters in hybrid models and also in the older strip models. The most successful results were obtained when the density of the methylene region was constrained to the value obtained from the wide-angle scattering. Further analysis utilized the lipid volume obtained from absolute specific volume measurements. Together with the fundamental relations derived in the previous paper, the electron density modeling yielded the headgroup volume (340 +/- 10 A3) and the methylene volume (25.3 +/- 0.2A3). The results were in agreement whether the hybrid model or the strip model was used and whether our data or the data of Torbet and Wilkins were used. Additional structural results, such as the area (45.9 +/- 2.0 A2) and the number of waters of hydration per lipid (10.6 +/- 2.0), required one additional piece of information, which we took to be the tilt angle theta, which is 30 +/- 3 degrees from other experiments in the literature. Absolute electron density profiles, which clearly indicate two features in the headgroup region, are presented. The analysis yielded an accurate value of F(0), which contributes to the continuous scattering transform F(X), which is also given. 相似文献
13.
A detailed picture of the orientation and restricted motion of the cholestane spin label (3-spiro-doxyl-5α-cholestane) in planar multibilayers of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine has been recorded by simultaneous simulation of ESR spectra obtained with the magnetic field parallel and perpendicular to the bilayers (Shimoyama, Y., Eriksson, L.E.G. and Ehrenberg, A. (1978) Biochim. Biophys. Acta 508, 213–235). The analysis has been made over the temperature range ?30°C to 60°C on samples containing 20 to 22% water. At low temperatures the cholestane spin label is tilted with respect to the lipid bilayer normal by an angle of approx. 30° which disappears at the pretransition. In this low temperature range the restricted twisting motion has an activation energy of 5.5 kJ·mol?1. Above the main transition the twisting motion is unrestricted and has the activation energy 20 kJ·mol?1. From below the pretransition to above the main transition the velocity of the twisting motion increases by an order of magnitude. The amplitude of the wobbling motion increases abruptly from 0° to 35° at the main transition. 相似文献
14.
We consider three models of cholesterol distribution in the plane of a bilayer of DMPC. We analyse recent 2H-NMR data obtained from deuterated fluorescent probes and show that, on the characteristic time-scale of 2H-NMR, it is in accord with a random distribution of cholesterol in a fluid-like DMPC bilayer in a single phase at least for T greater than or approximately equal to 35 degrees C and for 0 less than or equal to c less than or equal to 0.42. 相似文献
15.
16.
A fluorescence anisotropy study on the phase behavior of dimyristoylphosphatidylcholine/cholesterol mixtures 总被引:2,自引:0,他引:2
The phase behavior of L-alpha-dimyristoylphosphatidylcholine/cholesterol mixtures was studied in multilamellar vesicles by fluorescence polarization of the sterol molecule dehydroergosterol and of the polyene molecule alpha-parinaric acid. In the absence of cholesterol, dehydroergosterol exhibited an increase in polarization as DMPC vesicles were heated through the phase transition. This rise in polarization anisotropy was observed over a 0.6-1.0 degrees C increase in temperature with the midpoint of the phase transition occurring at 23.6 degrees C. Addition of 5 mol% cholesterol completely obliterated this change in polarization anisotropy through the phase transition of DMPC. alpha-Parinaric acid underwent a characteristic decrease in polarization anisotropy through the phase transition of DMPC. The change in anisotropy through the phase transition was over 4-fold greater than the values observed with dehydroergosterol. Vesicles containing 5 mol% cholesterol in the presence of alpha-parinaric acid underwent a decrease in polarization anisotropy that was over 75% of the original decrease in amplitude observed in the absence of any membrane cholesterol. The difference in sensitivity of the two fluorescent probes to the phase transition of DMPC as a function of membrane cholesterol content may be explained by a preferential partitioning of dehydroergosterol (and cholesterol) into a sterol-rich phase at low sterol concentrations. This partitioning allows dehydroergosterol to detect sterol-rich regions in the membrane bilayer. 相似文献
17.
S E Church D J Griffiths R N Lewis R N McElhaney H H Wickman 《Biophysical journal》1986,49(3):597-605
Structures of lamellar phases in aqueous dispersions of diisoacylphosphatidylcholines (17iPC and 20iPC) were determined by x-ray diffraction methods. In agreement with previous DSC studies, subgel, gel, and liquid crystal phases were observed in each homolog. The subgel Lc(c') phases of both homologs show significant two-dimensional long range order and can be described by rectangular lattices. The dimensions of the two rectangular unit cells differ in that the side chains are canted (approximately 33 degrees) in the 20iPC homolog, while in 17iPC the side chains are normal to the bilayer plane. The gel L beta phases of 17iPC (Tgg = 17-19.5 degrees C) and 20iPC (Tgg = 44 degrees C) are similar but not identical and are consistent with a distorted, pseudohexagonal lattice for the rotationally disordered side chains. The liquid crystal phases of 17iPC (Tgl = 28 degrees C) and 20iPC (Tgl = 52 degrees C) are structurally similar and are typical of lipids with fluid side chains. Significant but different changes occur in the long spacings at Tgg and Tgl for the two homologs. This implies that interfacial states (particularly in the subgel phases) differ in the two homologs below the liquid crystal phase transition temperature. 相似文献
18.
Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. 总被引:11,自引:0,他引:11
The technique of fluorescence recovery after photobleaching is used to perform an extensive study of the lateral diffusion of a phospholipid probe in the binary mixture dimyristoylphosphatidylcholine/cholesterol, above the melting temperature of the phospholipid. In the regions of the phase diagram where a single liquid phase exists, diffusion can be quantitatively described by free volume theory, using a modified Macedo-Litovitz hybrid equation. In the liquid-liquid immiscibility region, the temperature dependence of the diffusion coefficient is in excellent agreement with current theories of generalized diffusivities in composite two-phase media. A consistent interpretation of the diffusion data can be provided based essentially on the idea that the primary effect of cholesterol addition to the bilayer is to occupy free volume. On this basis, a general interpretation of the phase behavior of this mixture is also proposed. 相似文献
19.
Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes. 下载免费PDF全文
The comparative effect of cholesterol (CH) versus cholesterol sulfate (CS) on dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by optical microscopy, freeze-fracture electron microscopy, x-ray diffraction, and solid state 2H and 31P nuclear magnetic resonance (NMR). The sulfate analogue extends the lamellar phase domain toward high water contents, and substitution of 30 mol % CH by CS in DMPC lamellae induces the trapping of 30 wt % additional water. The greater swelling of the CS-containing systems is evidenced by determination of lamellar repeat distances at maximal hydration: 147 +/- 4 A and 64 +/- 2 A in the presence of CS and CH, respectively. 2H-NMR of heavy water demonstrates that CS binds approximately 12 more water molecules at the interface than CH whereas NMR of deuterium-labeled DMPC chains reveals that 30 mol % CS orders the membrane as 15 mol % CH at high temperature and disorders much more than CH at low temperatures. The various effects of CS versus CH are discussed by taking into account attractive Van der Waals forces and repulsive steric/electrostatic interactions of the negatively charged sulfate group. 相似文献
20.
Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. 总被引:1,自引:0,他引:1 下载免费PDF全文
This study focuses on dioleoylphosphatidylcholine (DOPC) bilayers near full hydration. Volumetric data and high-resolution synchrotron x-ray data are used in a method that compares DOPC with well determined gel phase dipalmitoylphosphatidylcholine (DPPC). The key structural quantity obtained is fully hydrated area/lipid A0 = 72.2 +/- 1.1 A2 at 30 degrees C, from which other quantities such as thickness of the bilayer are obtained. Data for samples over osmotic pressures from 0 to 56 atmospheres give an estimate for the area compressibility of KA = 188 dyn/cm. Obtaining the continuous scattering transform and electron density profiles requires correction for liquid crystal fluctuations. Quantitation of these fluctuations opens an experimental window on the fluctuation pressure, the primary repulsive interaction near full hydration. The fluctuation pressure decays exponentially with water spacing, in agreement with analytical results for soft confinement. However, the ratio of decay length lambda(fl) = 5.8 A to hydration pressure decay length lambda = 2.2 A is significantly larger than the value of 2 predicted by analytical theory and close to the ratio obtained in recent simulations. We also obtain the traditional osmotic pressure versus water spacing data. Our analysis of these data shows that estimates of the Hamaker parameter H and the bending modulus Kc are strongly coupled. 相似文献