首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With 25 strains belonging to 12 species of the genus Bacillus, the base composition of DNA, the susceptibility to bacteriophages, and the ability to transform Bacillus subtilis strain Marburg were studied. Analyses of phage DNAs were also performed. The results were as follows: (1) The DNA base compositions were not uniform even among strains belonging to one taxonomic species. (2) The DNAs extracted from B. natto, B. megaterium and B. polymyxa could transform genetic traits of B. subtilis Marburg although the frequencies were not equal. (3) The host ranges of some temperate bacteriophages were correlated with the taxonomical data. On these bases, the phylogenetic relatedness of B. subtilis to B. megaterium was discussed.  相似文献   

2.
Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.  相似文献   

3.
Aim:  To investigate the effects of Bacillus subtilis , Bacillus licheniformis and Bacillus megaterium in terms of toxin and growth of pathogenic Vibrio harveyi .
Methods and Results:  Three Bacillus probionts were isolated from probiotic BZT aquaculture and identified using a 16S rDNA sequence. Growth inhibition assay showed that supernatants from the 24-h culture of three Bacillus species were able to inhibit the growth of V. harveyi (LMG 4044); B. subtilis was the most effective based on the well diffusion method. Results of a liquid culture model showed that B. subtilis was also widely effective in inhibiting three strains of V. harveyi (isolated from Thailand, the Philippines and LMG 4044), and that both B. licheniformis and B. megaterium inhibit the growth of V. harveyi isolated from the Philippines. Moreover, a haemolytic activity assay demonstrated that V. harveyi (IFO 15634) was significantly decreased by the addition of B. licheniformis or B. megaterium supernatant.
Conclusions:  Bacillus subtilis inhibited Vibrio growth, and both B. licheniformis and B. megaterium suppressed haemolytic activity in Vibrio .
Significance and Impact of the Study:  The cell-free supernatants produced by Bacillus probionts inhibit Vibrio disease, and Bacillus probionts might have an influence on Vibrio cell-to-cell communications.  相似文献   

4.
Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H(2)O(2)) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H(2)O(2), as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.  相似文献   

5.
AIMS: To compare the relative sensitivity of Bacillus anthracis and spores of other Bacillus spp. deposited on different solid surfaces to inactivation by liquid chemical disinfecting agents. METHODS AND RESULTS: We prepared under similar conditions spores from five different virulent and three attenuated strains of B. anthracis, as well as spores of Bacillus subtilis, Bacillus atrophaeus (previously known as Bacillus globigii), Bacillus cereus, Bacillus thuringiensis and Bacillus megaterium. As spore-surface interactions may bias inactivation experiments, we evaluated the relative binding of different spores to carrier materials. The survival of spores deposited on glass, metallic or polymeric surfaces were quantitatively measured by ASTM standard method E-2414-05 which recovers spores from surfaces by increasing stringency. The number of spores inactivated by each decontaminant was similar and generally within 1 log among the 12 different Bacillus strains tested. This similarity among Bacillus strains and species was observed through a range of sporicidal efficacy on spores deposited on painted metal, polymeric rubber or glass. CONCLUSIONS: The data obtained indicate that the sensitivity of common simulants (B. atrophaeus and B. subtilis), as well as spores of B. cereus, B. thuringiensis, and B. megaterium, to inactivation by products that contain either: peroxide, chlorine or oxidants is similar to that shown by spores from all eight B. anthracis strains studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The comparative results of the present study suggest that decontamination and sterilization data obtained with simulants can be safely extrapolated to virulent spores of B. anthracis. Thus, valid conclusions on sporicidal efficacy could be drawn from safer and less costly experiments employing non-pathogenic spore simulants.  相似文献   

6.
The fatty acid desaturase activity in cell extracts of Bacillus subtilis was characterized and found to be O2 dependent, NADH dependent, and cyanide sensitive. In cell fractionation studies, only 10% of the desaturase activity was recovered in the membrane fraction; the addition of cytosolic factors, which by themselves were devoid of activity, restored membrane activity to the level found in the unfractionated cell extracts. NADH was preferred over NADPH as an electron donor, and palmitoyl-coenzyme A was used preferentially over stearoyl-coenzyme A as the straight-chain fatty acid substrate. An increase in desaturase activity was observed when either the growth or the assay temperature was lowered from 37 to 20 degrees C, although the assay temperature appeared to be the more important parameter. Three protonophore-resistant mutants of B. subtilis and a comparable mutant of Bacillus megaterium had been found to possess reduced levels of unsaturated fatty acids in their membrane phospholipids; their protonophore resistance was abolished when grown in the presence of an unsaturated fatty acid supplement. All of these strains were found to be either significantly deficient in or totally lacking desaturase activity in comparison with their wild-type parent strains. Full, protonophore-sensitive revertants of the mutants had levels of desaturase activity comparable to those of the wild-type. Temperature-sensitive revertants of two of the mutants, which grew at 32 degrees C but not at 26 degrees C in the presence of protonophore, exhibited desaturase activity comparable to that of the wild-type at 26 degrees C but lacked activity at 32 degrees C. These results indicate that the biochemical basis for protonophore resistance in these Bacillus mutants is a fatty acid desaturase deficiency.  相似文献   

7.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

8.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   

9.
10.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

11.
The small acid-soluble spore proteins alpha and beta were not detected during stationary-phase growth of asporogenous Bacillus subtilis mutants blocked in stages 0, II, or III, but mutants blocked in stages IV or V accumulated nearly wild-type levels of these small acid-soluble spore proteins. Similar results were obtained when production of Bacillus megaterium C protein (also a small acid-soluble spore protein), as well as alpha and beta, were monitored in these mutants containing a recombinant plasmid carrying the B. megaterium C protein gene. The only exception was a spo0H mutant which synthesized a small amount of C protein, but no alpha or beta.  相似文献   

12.
刘刚  张燕  邢苗 《生物工程学报》2006,22(2):191-197
探讨了双启动子对基于溶源性噬菌体构建的重组枯草杆菌中外源蛋白表达的影响。分别将不含或含有本身启动子的α-淀粉酶基因(来源于Bacillus amyloliquefaciens)和青霉素酰化酶基因(来源于Bacillus megaterium)克隆到溶源性枯草杆菌中,得到重组菌B.subtilisAMY1,B.subtilisAMY2,B.subtilisPA1以及B.subtilisPA2。由于同源重组,所克隆的片段整合到溶源性枯草杆菌中的噬菌体基因组上,并处于噬菌体强启动子的下游。在重组菌AMY1和PA1中,在热诱导的情况下外源基因的转录只受到噬菌体启动子的作用,而在重组菌AMY2和PA2中,在热诱导下外源基因的转录同时受到噬菌体启动子和基因本身所带启动子的作用。双启动子的应用使重组α-淀粉酶的表达量提高了133%,使重组青霉素酰化酶的表达量提高了113%。  相似文献   

13.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.  相似文献   

14.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

15.
16.
V Sekar  B C Carlton 《Gene》1985,33(2):151-158
A transformant of Bacillus megaterium, VB131, was isolated which carries a 6.3-kb XbaI segment of the crystal toxin gene of Bacillus thuringiensis var. israelensis (BTI) cloned in a vector plasmid pBC16 to yield pVB131. The chimeric plasmid DNA from VB131 was introduced into a transformable Bacillus subtilis strain by competence transformation. Both the B. megaterium VB131 strain and the B. subtilis strain harboring the chimeric plasmid produced irregular, parasporal, phase-refractile, crystalline inclusions (Cry+) during sporulation. The sporulated cells as well as the isolated crystal inclusions of the pVB131-containing B. megaterium and B. subtilis strains were highly toxic to the larvae of Aedes aegypti. Also, the solubilized crystal protein preparation from VB131[pVB131] showed clear immuno cross-reaction with antiserum to the BTI crystal toxin. 32P-labeled pVB131 plasmid DNA showed specific hybridization with a 112-kb plasmid DNA of Cry+ strains of BTI, and no hybridization with other plasmid or chromosomal DNA of either Cry+ or Cry- variants. These results are in agreement with our previous findings (González and Carlton, 1984) that the 112-kb plasmid of BTI is associated with the production of the crystal toxin.  相似文献   

17.
18.
Significant differences in expression of the delta-endotoxin genes cryA1 and cryA2 of Bacillus thuringiensis subsp. kurstaki were observed in B. subtilis and B. megaterium. The cryA1 gene was expressed when present on a high-copy-number (hcn) vector in B. megaterium but not in B. subtilis. The cryA2 gene was expressed in both hosts, but at a higher level in B. megaterium. Expression of the cryA2 gene in B. megaterium was better from a hcn vector than from a low copy number vector. Inhibition of sporulation was observed when the toxin genes were present on hcn plasmids in B. subtilis while no such effect was evident in B. megaterium. In addition, there was a significant reduction in copy numbers in both B. subtilis and B. megaterium when delta-endotoxin genes or a spoVG promoter-containing fragment of DNA were cloned into hcn plasmids.  相似文献   

19.
Thermophilic mutants were isolated from mesophilic Bacillus subtilis and Bacillus pumilus by plating large numbers of cells and incubating them for several days at a temperature about 10 degrees C above the upper growth temperature limit for the parent mesophiles. Under these conditions we found thermophilic mutant strains that were able to grow at temperatures between 50 degrees C and 70 degrees C at a frequency of less than 10(-10). The persistence of auxotrophic and antibiotic resistance markers in the thermophilic mutants confirmed their mesophilic origin. Transformation of genetic markers between thermophilic mutants and mesophilic parents was demonstrated at frequencies of 10(-3) to 10(-2) for single markers and about 10(-7) for two unlinked markers. With the same procedure we were able to transfer the thermophilic trait from the mutant strains of Bacillus to the mesophilic parental strains at a frequency of about 10(-7), suggesting that the thermophilic trait is a phenotypic consequence of mutations in two unlinked genes.  相似文献   

20.
In order to establish a novel recovery system for polyhydroxyalkanoates, a self-disruptive strain of Bacillus megaterium that responds to substrate exhaustion was constructed. A gene cassette carrying the lysis system of Bacillus amyloliquefaciens phage - holin and endolysin - was inserted into the Escherichia coli- Bacillus subtilis shuttle vector pX under the control of a xylose-inducible expression system, xylR-xylA '. In this system, the expression of a target gene is induced by xylose but inhibited by glucose, which acts as an anti-inducer. B. megaterium was transformed with pX conveying the phage lysis system, which was integrated into the amyE locus of chromosomal DNA of B. megaterium by homologous recombination. The lysis system caused self-disruption of the transformant cells effectively even when expression of the lysis genes was induced during stationary phase. For the production of polyhydroxybutyrate (PHB), the transformant was grown in a medium containing glucose as a substrate in the presence of xylose. When the glucose concentration approached zero, self-disruption was spontaneously induced, releasing intracellularly accumulated PHB into the culture broth. This system realizes timely cell disruption immediately after the PHB content in the cell reaches a maximum level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号