首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extra- and intracellular Escherichia coli hemolysin expressed by two cloned hly determinants, both under the control of the activator element hlyR, were analyzed. One determinant carried all four hly genes (hlyC, hlyA, hlyB, and hlyD), whereas the other carried only the two genes (hlyC and hlyA) required for synthesis of active hemolysin but not those essential for its secretion. It was shown that the total amounts of HlyA protein and of hemolytic activity are similar in both cases in logarithmically growing cultures. The E. coli strain carrying the complete hly determinant released most hemolysin into the media and accumulated very little HlyA intracellularly. The active extracellular hemolysin (HlyA*) was inactivated in the stationary phase without degradation of the HlyA protein. In contrast, the hemolysin which accumulated intracellularly in the E. coli strain carrying hlyA and hlyC only was proteolytically degraded at the end of the logarithmic growth phase. Immunogold labeling indicates that active intracellular HlyA bound preferentially to the inner membrane, whereas that part of the extracellular HlyA which remained cell-bound was located exclusively at the cell surface. It was shown by fluorescence-activated cell sorter analysis that active extra- and intracellular HlyA* bound with similar efficiency to erythrocytes, whereas hemolytically inactive HlyA protein did not bind to these target cells.  相似文献   

2.
3.
A clinical strain SSU of Aeromonas hydrophila produces a potent cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. A new gene, which encoded a hemolysin of 439-amino acid residues with a molecular mass of 49 kDa, was identified. This hemolysin (HlyA) was detected based on the observation that the act gene minus mutant of A. hydrophila SSU still had residual hemolytic activity. The new hemolysin gene (hlyA) was cloned, sequenced, and overexpressed in Escherichia coli. The hlyA gene exhibited 96% identity with its homolog found in a recently annotated genome sequence of an environmental isolate, namely the type strain ATCC 7966 of A. hydrophila subspecies hydrophila. The hlyA gene did not exhibit any homology with other known hemolysins and aerolysin genes detected in Aeromonas isolates. However, this hemolysin exhibited significant homology with hemolysin of Vibrio vulnificus as well as with the cystathionine beta synthase domain protein of Shewanella oneidensis. The HlyA protein was activated only after treatment with trypsin and the resulting hemolytic activity was not neutralizable with antibodies to Act. The presence of the hlyA gene in clinical and water Aeromonas isolates was investigated and DNA fingerprint analysis was performed to demonstrate its possible role in Aeromonas virulence.  相似文献   

4.
Previously, we constructed human interleukin-6 (hIL-6)-secreting Escherichia coli and Salmonella typhimurium strains by fusion of the hIL-6 cDNA to the HlyA(s) secretional signal, utilizing the hemolysin export apparatus for extracellular delivery of a bioactive hIL-6-hemolysin (hIL-6-HlyA(s)) fusion protein. Molecular analysis of the secretion process revealed that low secretion levels were due to inefficient gene expression. To adapt the codon usage in hIL-6 cDNA to the E. coli codon bias, a synthetic hIL-6Ec gene variant was constructed from 20 overlapping oligonucleotides, yielding a 561-bp fragment, which comprises the complete hIL-6 cDNA sequence. Genetic fusion of the hIL-6Ec gene with the hlyA(s) secretional signal as an integral part of the hemolysin operon resulted in 3-fold higher hIL-6-HlyA(s) secretion levels in E. coli, compared to a strain expressing the original hIL-6-hlyA(s) fusion gene. An increase in the electrophoretic mobility of secreted hIL-6-HlyA(s) in non-reducing SDS-PAGE, similar to that found for recombinant mature hIL-6, and the absence of such a mobility shift in the intracellular hIL-6-HlyA(s) protein fraction indicated that in hIL-6-HlyA(s) most probably correct intramolecular disulfide bond formation occurred during the secretion step. To confirm the disulfide bond formation, hIL-6-HlyA(s) was purified by a single-step immunoaffinity chromatography from culture supernatant in yields of 18 microg/L culture supernatant with purity in the range of 60%. These results demonstrate that codon usage has an impact on the hemolysin-mediated secretion of hIL-6 and, furthermore, provide evidence that the hemolysin system enables secretory delivery of disulfide-bridged proteins.  相似文献   

5.
The extracellular calmodulin-sensitive adenylate cyclase produced by Bordetella pertussis is synthesized as a 215-kDa precursor. This polypeptide is transported to the outer membrane of the bacteria where it is proteolytically processed to a 45-kDa catalytic subunit which is released into the culture supernatant [Masure, H.R., & Storm, D.R. (1989) biochemistry 28, 438-442]. The gene encoding this enzyme, cyaA, is part of the cya operon that also includes the genes cyaB, cyaD, and cyaE. A comparison of the predicted amino acid sequences encoded by cyaA, cyaB, and cyaD with the amino acid sequences encoded by hlyA, hlyB, and hlyD genes from the hemolysin (hly) operon from Escherichia coli shows a large degree of sequence similarity [Glaser, P., Sakamoto, H., Bellalou, J., Ullmann, A., & Danchin, A. (1988) EMBO J. 7, 3997-4004]. Complementation studies have shown that HlyB and HlyD are responsible for the secretion of HlyA (hemolysin) from E. coli. The signal sequence responsible for secretion of hemolysin has been shown to reside in its C-terminal 27 amino acids. Similarly, CyaB, CyaD, and CyaE are required for the secretion of CyaA from Bordetella pertussis. We placed the cyaA gene and a truncated cyaA gene that lacks the nucleotides that code for a putative C-terminal secretory signal sequence under the control of the lac promoter in the plasmid pUC-19. These plasmids were transformed into strains of E. coli which contained the hly operon. The truncated cyaA gene product, lacking the putative signal sequence, was not secreted but accumulated inside the cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. Extracellular protein secretion has the advantage of reducing protein aggregation and simplifying downstream purification. The introduction of five rare codons in a specific region of the alpha-hemolysin (hlyA) gene previously was shown to result in eightfold improvement in secretion of HlyA via the hemolysin (Type-I) pathway. Here we investigate the biological basis for the observed phenomenon that translation rate of HlyA protein may be related to the ability to secrete higher levels of HlyA via the Type-I pathway. A detailed comparative analysis between a hypersecreter mutant strain (hly-slow) and a control strain (hly-parent) shows a significant decrease (by approximately 50%) in the intracellular level of HlyA protein in the hly-slow strain relative to the hly-parent strain. Nearly 100% of the intracellular HlyA protein exists in the inclusion body fraction in both the strains. These results demonstrate the importance of synonymous codon changes in the context of improving HlyA secretion yield via Type-I pathway and further illustrate that production of high levels of secreted proteins appears to require a balance between translation and secretion rate.  相似文献   

7.
Two different plasmid-vector systems were developed which allow the efficient production and presentation of protein antigens in antigen-presenting cells (APC) by means of virulence-attenuated bacteria. The first antigen-delivery system is based on the secretion machinery of the Escherichia coli hemolysin (HlyA-type I secretion system), which transports proteins, possessing the specific HlyA secretion signal (HlyA(s)) at the C-terminus, across both membranes of gram-negative bacteria. This system functions in all gram-negative bacteria that possess the TolC-analogous protein in the outer membrane. This outer membrane protein is necessary for the stable anchoring of the type I secretion apparatus in the cell envelope. Suitable HlyA(s)-fused antigens are secreted with high efficiency by E. coli and by virulence-attenuated strains of Salmonella, Shigella, Vibrio cholerae and Yersinia enterocolitica. The other vector system expresses the heterologous antigen under the control of an eukaryotic promoter in a similar fashion as in plasmids commonly used for vaccination with naked DNA. This plasmid DNA is introduced into APCs with the help of virulence-attenuated self-destructing Listeria monocytogenes mutants. After synthesis of the heterologous protein, epitopes of the antigen are presented by the APC together with MHC class I molecules. This system functions in macrophages and dendritic cells in vitro and can also be used in a modified form in animal models.  相似文献   

8.
Active and inactive forms of hemolysin (HlyA) from Escherichia coli   总被引:11,自引:0,他引:11  
The HlyA protein (Mr 110 kDa) which is the gene product of the hlyA gene encoded by the hemolysin determinant of Escherichia coli (Goebel, W. & Hedgpeth, J. (1982) J. Bacteriol. 151, 1290-1298) was observed to accumulate in the culture supernatant (in the presence of the three other Hly proteins HlyC, B and D) throughout the active growth cycle. However, the amount of extracellular HlyA protein did not correlate with the external hemolytic activity, which declined when the cells entered the stationary phase. External hemolytic activity was highly sensitive to phospholipase C and to ultrasonication. The size of the HlyA protein on SDS-PAGE was not changed by these treatments although the hemolytic activity was entirely abolished. On a polyacrylamide gel containing 2M urea but only 0.1% SDS hemolytically active HlyA migrated slightly ahead of the inactive HlyA suggesting that HlyA is more negatively charged than HlyA. Active hemolysin from unconcentrated hemolytic supernatants migrated on Sephacryl S-400 and on glycerol gradients as large complexes. Analysis of the hemolytically active fractions on SDS-PAGE yielded in both cases only HlyA (110 kDA) as major protein. An internal hemolytic activity appeared in most Escherichia coli K-12 strains in the stationary phase which was independent of the presence of HlyA or any other Hly gene product. This hemolytic activity which reached in some strains about 10% of the level determined by the hly genes was sensitive to proteinase K and disappeared upon shift of the cells to the logarithmic phase.  相似文献   

9.
Transport of hemolysin by Escherichia coli   总被引:25,自引:0,他引:25  
The hemolytic phenotype in Escherichia coli is determined by four genes. Two (hlyC and hlyA) determine the synthesis of a hemolytically active protein which is transported across the cytoplasmic membrane. The other two genes (hlyBa and hlyBb) encode two proteins which are located in the outer membrane and seem to form a specific transport system for hemolysin across the outer membrane. The primary product of gene hlyA is a protein (protein A) of 106,000 daltons which is nonhemolytic and which is not transported. No signal peptide can be recognized at its N-terminus. In the presence of the hlyC gene product (protein C), the 106,000-dalton protein is processed to the major proteolytic product of 58,000 daltons, which is hemolytically active and is transported across the cytoplasmic membrane. Several other proteolytic fragments of the 106,000-dalton protein are also generated. During the transport of the 58,000-dalton fragment (and possible other proteolytic fragments of hlyA gene product), the C protein remains in the cytoplasm. In the absence of hlyBa and hlyBb the entire hemolytic activity (mainly associated with the 58,000-dalton protein) is located in the periplasm: Studies on the location of hemolysin in hlyBa and hlyBb mutants suggest that the gene product of hlyBa (protein Ba) binds hemolysin and leads it through the outer membrane whereas the gene product of hlyBb (protein Bb) releases hemolysin from the outer membrane. This transport system is specific for E coli hemolysin. Other periplasmic enzymes of E coli and heterologous hemolysin (cereolysin) are not transported.  相似文献   

10.
A 110-kilodalton polypeptide isolated from cell-free culture supernatants of hemolytic Escherichia coli was shown to be associated with hemolytic activity. The relative amount of the extracellular 110-kilodalton species detected directly reflects the extracellular hemolysin activity associated with Escherichia coli strains harboring different hemolysin recombinant plasmids. The predicted molecular mass of the hemolysin structural gene (hlyA) based on DNA sequence analysis was 109,858 daltons. Amino-terminal amino acid sequence analysis of the 110-kilodalton polypeptide provided direct evidence that it was encoded by hlyA. Based on this information, it was also demonstrated that the HlyA polypeptide was released extracellularly without signal peptidase-like cleavage. An examination of hemolysin-specific polypeptides detected by use of recombinant plasmids in a minicell-producing strain of Escherichia coli was performed. These studies demonstrated how hemolysin-associated 110- and 58-kilodalton polypeptides detected in the minicell background could be misinterpreted as a precursor-product relationship.  相似文献   

11.
Transcriptional organization of the Escherichia coli hemolysin genes   总被引:39,自引:10,他引:39       下载免费PDF全文
  相似文献   

12.
13.
We have studied the C-terminal signal which directs the complete export of the 1024-amino-acid hemolysin protein (HlyA) of Escherichia coli across both bacterial membranes into the surrounding medium. Isolation and sequencing of homologous hlyA genes from the related bacteria Proteus vulgaris and Morganella morganii revealed high primary sequence divergence in the three HlyA C-termini and highlighted within the extreme terminal 53 amino acids the conservation of three contiguous sequences, a potential 18-amino-acid amphiphilic alpha-helix, a cluster of charged residues, and a weakly hydrophobic terminal sequence rich in hydroxylated residues. Fusion of the C-terminal 53 amino acid sequence to non-exported truncated Hly A directed wild-type export but export was radically reduced following independent disruption or progressive truncation of the three C-terminal features by in-frame deletion and the introduction of translation stop codons within the 3' hlyA sequence. The data indicate that the HlyA C-terminal export signal comprises multiple components and suggest possible analogies with the mitochondrial import signal. Hemolysis assays and immunoblotting confirmed the intracellular accumulation of non-exported HlyA proteins and supported the view that export proceeds without a periplasmic intermediate. Comparison of cytoplasmic and extracellular forms of an independently exported extreme C-terminal 194 residue peptide showed that the signal was not removed during export.  相似文献   

14.
15.
A simple and efficient procedure for the construction of secreted fusion proteins inEscherichia coli is described that uses a new minitransposon, termed TnhlyAs, carrying the secretion signal (HlyAs) ofE. coli hemolysin (HlyA). This transposon permits the generation of random gene fusions encoding proteins that carry the HlyAs at their C-termini. For the construction of model gene fusions we usedlacZ, encoding the cytoplasmicβ-galactosidase (β-Gal), andphoA, encoding the periplasmic alkaline phosphatase, as target genes. Our data suggest that allβ-Gal-HlyAs fusion proteins generated are secreted, albeit with varying efficiencies, by the HlyB/HlyD/TolC hemolysin secretion machinery under Sec-proficient conditions. In contrast, the PhoA-HlyAs fusion proteins are efficiently secreted in asecA mutant strain only under SecA-deficient conditions.  相似文献   

16.
A bacteriological investigation of Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 was performed on 298 carcasses of cattle at slaughter houses between July 1996 and January 1997 in Gifu Prefecture, Japan. As a result, four Stx-non-producing Escherichia coli O157:H7 strains were isolated from two slaughtered carcasses of cattle. The purpose of this study was to examine the characterization of isolates. Isolates possessed the E. coli attaching and effacing gene (eaeA), and hemolysin gene (hlyA), and harbored 3.0-MDa and 60-MDa plasmids. The Xba I pulsed-field gel electrophoresis (PFGE) pattern showed three similar patterns. Consequently, a closely related genotype of Stx-non-producing E. coli O157:H7 may widely exist in cattle.  相似文献   

17.
We have cloned the chromosomal hemolysin determinants from Escherichia coli strains belonging to the four O-serotypes O4, O6, O18, and O75. The hemolysin-producing clones were isolated from gene banks of these strains which were constructed by inserting partial Sau3A fragments of chromosomal DNA into the cosmid pJC74. The hemolytic cosmid clones were relatively stable. The inserts were further subcloned either as SalI fragments in pACYC184 or as BamHI-SalI fragments in a recombinant plasmid (pANN202) containing cistron C (hlyC) of the plasmid-encoded hemolysin determinant. Detailed restriction maps of each of these determinants were constructed, and it was found that, despite sharing overall homology, the determinants exhibited minor specific differences in their structure. These appeared to be restricted to cistron A (hlyA), which is the structural gene for hemolysin. In the gene banks of two of these hemolytic strains, we could also identify clones which carried the genetic determinants for the mannose-resistant hemagglutination antigens Vb and VIc. Both of these fimbrial antigens were expressed in the E. coli K-12 clones to an extent similar to that observed in the wild-type strains. These recombinant cosmids were rather unstable, and, in the absence of selection, segregated at a high frequency.  相似文献   

18.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5′ end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

19.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

20.
The insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodium spp.) in the mosquito host. We hypothesized that Pantoea agglomerans, a bacterial symbiont of Anopheles mosquitoes, could be engineered to express and secrete anti-Plasmodium effector proteins, a strategy termed paratransgenesis. To this end, plasmids that include the pelB or hlyA secretion signals from the genes of related species (pectate lyase from Erwinia carotovora and hemolysin A from Escherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodium effector proteins (SM1, anti-Pbs21, and PLA2) in P. agglomerans and E. coli. P. agglomerans successfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodium activity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号