共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. 总被引:1,自引:0,他引:1
Gaoxiang Ge Jing Wu Yan Wang Qishui Lin 《Biochemical and biophysical research communications》2002,290(3):914-920
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased. 相似文献
2.
Activation of cells is frequently followed by tyrosine phosphorylation of proteins. To quantify this process, we developed a ratiometric enzyme-linked immunosorbent assay (ELISA) using epidermal growth factor receptors (EGFR) as a model. Microtiter dishes were coated with anti-EGFR monoclonal antibodies to capture the receptor followed by parallel detection of receptor and phosphotyrosine content with secondary antibodies. The ratio of these two parameters was found to directly reflect EGFR activation and was insensitive to the effect of receptor downregulation. Our assay could resolve differences in EGFR activation due to small changes (less than 1 ng/ml) in ligand. We found that phosphotyrosine detection by ELISA was 8- to 32-fold more sensitive than Western blot detection and could be reliably detected using as little as 4 ng of cellular lysate. Detection of EGFR levels by ELISA was 30 times more sensitive than Western blot analysis and was reliable for as low as 8 ng of cellular lysate per well. Because of the wide linear range of the ELISA, we could directly compare receptor activation in cell types with different EGFR expression levels. Our assay provides a rapid and sensitive method of determining EGFR activation status and could be easily modified to evaluate any tyrosine-phosphorylated protein. 相似文献
3.
Kinetic analysis of the inhibition of the epidermal growth factor receptor tyrosine kinase by Lavendustin-A and its analogue 总被引:3,自引:0,他引:3
C Y Hsu P E Persons A P Spada R A Bednar A Levitzki A Zilberstein 《The Journal of biological chemistry》1991,266(31):21105-21112
Lavendustin-A was reported to be a potent tyrosine kinase inhibitor of the epidermal growth factor (EGF) receptor (Onoda, T., Iinuma, H., Sasaki, Y., Hamada, M., Isshibi, K., Naganawa, H., Takeuchi, T., Tatsuta, K., and Umezawa, K. (1989) J. Nat. Prod. 52, 1252-1257). Its inhibition kinetics was studied in detail using the baculovirus-expressed recombinant intracellular domain of the EGF receptor (EGFR-IC). Lavendustin-A (RG 14355) is a slow and tight binding inhibitor of the receptor tyrosine kinase. The pre-steady state kinetic analysis demonstrates that the inhibition corresponds to a two-step mechanism in which an initial enzyme-inhibitor complex (EI) is rapidly formed followed by a slow isomerization step to form a tight complex (EI*). The dissociation constant for the initial rapid forming complex is 370 nM, whereas the overall dissociation constant is estimated to be less than or equal to 1 nM. The difference between the two values is due to the tight binding nature of the inhibitor to the enzyme in EI*. The kinetic analysis using a preincubation protocol to pre-equilibrate the enzyme with the inhibitor in the presence of one substrate showed that Lavendustin-A is a hyperbolic mixed-type inhibitor with respect to both ATP and the peptide substrate, with a major effect on the binding affinities for both substrates. An analogue of Lavendustin-A (RG 14467) showed similar inhibition kinetics to that of Lavendustin-A. The results of the pre-steady state analysis are also consistent with the proposed two-step mechanism. The dissociation constant for the initial fast forming complex in this case is 3.4 microM, whereas the overall dissociation constant is estimated to be less than or equal to 30 nM. It is a partial (hyperbolic) competitive inhibitor with respect to ATP. Its inhibition is reduced to different extents by different peptide substrates, when the peptide is added to the enzyme simultaneously with the inhibitor. When studied with the least protective peptide, K1 (a peptide containing the major autophosphorylation site of the EGF receptor), RG 14467 acts as a hyperbolic noncompetitive inhibitor with respect to the peptide. 相似文献
4.
Inhibition of tyrosine kinase activity of the epidermal growth factor (EGF) receptor by a truncated receptor form that binds to EGF: role for interreceptor interaction in kinase regulation. 总被引:7,自引:7,他引:7 下载免费PDF全文
The tyrosine kinase activity of the epidermal growth factor (EGF) receptor is regulated by a truncated receptor of 100 kilodaltons (kDa) that contains the EGF-binding site but not the kinase domain. The inhibition of kinase is not due to competition for available EGF or for the kinase substrate-binding site. Chemical cross-linking studies suggest that the 100-kDa receptor may form a heterodimer with the intact EGF receptor. Structurally related receptor kinases, such as the platelet-derived growth factor receptor, the insulin receptor, and the Neu receptor, were not inhibited by the 100-kDa receptor. The results indicate that (i) the inhibition was specific for the EGF receptor, (ii) the kinase domain had little or no role in determining target specificity, and (iii) the regulation of kinase may be due to a specific interaction of the 100-kDa receptor with the ligand-binding domain of the EGF receptor kinase. 相似文献
5.
E San José A Benguría P Geller A Villalobo 《The Journal of biological chemistry》1992,267(21):15237-15245
We demonstrate in this report that the epidermal growth factor (EGF) receptor from rat liver can be isolated by calmodulin affinity chromatography by binding in the presence of Ca2+ and elution with a Ca(2+)-chelating agent. The bulk of the EGF receptor is not eluted by a NaCl gradient in the presence of Ca2+. We ascertained the identity of the isolated receptor by immunoblot and immunoprecipitation using a polyclonal antibody against an EGF receptor from human origin. The purified receptor is autophosphorylated in tyrosine residues in an EGF-stimulated manner, and EGF-dependent phosphorylation of serine residues was also detected. Both the EGF and the transforming growth factor-alpha stimulate the tyrosine-directed protein kinase activity of the isolated receptor with similar affinities. Furthermore, we demonstrate that calmodulin inhibits the EGF-dependent tyrosine-directed protein kinase activity associated to the receptor in a concentration-dependent manner. This inhibition is partially Ca2+ dependent and is not displaced by increasing the concentration of EGF up to an EGF/calmodulin ratio of 10 (mol/mol). In addition, calmodulin was phosphorylated in an EGF-stimulated manner in the presence of a basic protein (histone) as cofactor and in the absence, but not in the presence, of Ca2+. 相似文献
6.
Transphosphorylation as a possible mechanism for insulin and epidermal growth factor receptor activation 总被引:13,自引:0,他引:13
R Lammers E Van Obberghen R Ballotti J Schlessinger A Ullrich 《The Journal of biological chemistry》1990,265(28):16886-16890
Fully functional chimeric receptors, consisting of major epidermal growth factor and insulin receptor domains, were co-expressed with kinase-negative epidermal growth factor and insulin receptor mutants in human kidney fibroblasts. Under these conditions, homologous extracellular and cytoplasmic domains mediated association of receptors and their precursors. The significance of receptor-receptor interaction was confirmed by transphosphorylation of kinase-negative receptors by ligand-activated chimeric receptors, which was observed between receptors sharing the same cytoplasmic domain as well as between receptors bearing only the same extracellular domain and containing heterologous kinases. Furthermore, the impaired ligand internalization capacity of a kinase-deficient insulin receptor was partially restored by transphosphorylation. Our experiments suggest interreceptor transphosphorylation and transactivation as a possible mechanism for signal amplification. 相似文献
7.
The biological activity of epidermal growth factor (EGF) is mediated through the intrinsic tyrosine kinase activity of the EGF receptor (EGFR). In numerous cell types, binding of EGF to the EGFR stimulates the tyrosine kinase activity of the receptor eventually leading to cell proliferation. In tumor-derived cell lines, which overexpress the EGFR, however, growth inhibition is often seen in response to EGF. The mechanism for growth inhibition is unclear. To study the relationship between growth inhibition and EGFR kinase activity, we have used a cell line (PC-10) derived from a human squamous cell carcinoma that overexpresses EGFR. When exposed to 25 ng/ml EGF at low cell densities (1,300 cells/cm2), PC-10 cells exhibit cell death. In contrast, if EGF is added to high density cultures, no EGF mediated cell death is seen. When PC-10 cells were maintained at confluency in the presence of 25 ng/ml EGF for a period of 1 month, they were subsequently found competent to proliferate at low density in the presence of EGF. We designate these cells APC-10. The APC-10 cells exhibited a unique response to EGF, and no concentration of EGF tested could produce cell death. By 125I-EGF binding analysis and [35S]methionine labeling of EGFR, it was found that the total number of EGFR on the cell surface of APC-10 was not decreased relative to PC-10. No difference between PC-10 and APC-10 was seen in EGF binding affinity to the EGFR. Significantly, EGF stimulated autophosphorylation of the EGFR of APC-10 was 8–10-fold lower than that of PC-10. This reduced kinase activity was also seen in vitro in membrane preparations for EGFR autophosphorylation as well as phosphorylation of an exogenously added substrate. No difference between PC-10 and APC-10 in the overall pattern of EGFR phosphorylation in the presence or absence of EGF was detectable. However, the serine and threonine phosphorylation of the EGFR of APC-10 cells was consistently 2–3-fold lower than that seen in PC-10 cells. These results suggest a novel mechanism for EGFR overexpressing cells to survive EGF exposure, one that involves an attenuation of the tyrosine kinase activity of the EGFR in the absence of a change in receptor levels or receptor affinity. © 1994 Wiley-Liss, Inc. 相似文献
8.
The EGFR is a validated anticancer target whose successful exploitation has added novel agents to our current treatment protocols. Subsets of patients have shown to benefit the most from these therapies, and though these differential responses have yet to be completely defined, they are mostly of genetic nature. Egfr amplifications have shown to increase sensitivity to both small molecule inhibitors and specific monoclonal antibodies targeting the EGFR. A somatic/germline egfr intron 1 CA repeat sequence polymorphism has shown to have an important role in the control of EGFR protein expression, and has been linked to an increased risk of familial breast cancer, a worse outcome in patients with colorectal cancer, and anti-EGFR treatment efficacy in preclinical models. Egfr activating mutations have been recently described in lung cancer linking a cluster of genotypes with sensitivity to EGFR tyrosine kinase pharmacological inhibition. Despite the initial excitement that this discovery elicited, follow-up reports have not unequivocally confirmed this finding, and these drugs have been solidly efficacious both in individual patients and in diseases generally lacking egfr mutations such as pancreas cancer. We are witnessing exciting developments in the field of the pharmacogenomics of cancer, and this has particularly evolved in the area pertaining EGFR tyrosine kinase inhibitors. This review will discuss the background and currently available preclinical and clinical data. 相似文献
9.
Suppression of protein tyrosine kinase activity of the epidermal growth factor receptor by epidermal growth factor 总被引:3,自引:0,他引:3
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated. 相似文献
10.
Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. 总被引:2,自引:0,他引:2
In our previous study, butein, a chalcone derivative, was found to be an inhibitor of tyrosine kinases and the inhibition was ATP-competitive. In this work, chalcone and seven chalcone derivatives were used to analyse the relationship between the structure of these compounds and their inhibition of tyrosine kinase activity. Three of chalcone derivatives, including butein, marein and phloretin, were found to have an ability to inhibit the tyrosine kinase activity of epidermal growth factor receptor (EGFR) in vitro. IC(50) was 8 microM for butein, 19 microM for marein and 25 microM for phloretin. The structural characterisations of these inhibitors suggest that the hydroxylations at C4 and C4' of these molecules may be required for them to act as EGFR tyrosine kinase inhibitors. The inhibition of EGF-induced EGFR tyrosine phosphorylation by butein was also observed in human hepatocellular carcinoma HepG2 cells, while marein and phloretin were inactive at the doses tested. Molecular modelling suggests that butein, marein and phloretin can be docked into the ATP binding pocket of EGFR. Hydrogen bonds and hydrophobic interaction appear to be important in the binding of these inhibitors to EGFR. 相似文献
11.
C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity 总被引:84,自引:0,他引:84
C Cochet G N Gill J Meisenhelder J A Cooper T Hunter 《The Journal of biological chemistry》1984,259(4):2553-2558
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo. 相似文献
12.
M Spaargaren L H Defize S W de Laat J Boonstra 《Biochemical and biophysical research communications》1990,171(2):882-889
Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild detergent treatment. We show that, irrespective of the recognition site on the EGF-R, antibodies induce EGF-R autophosphorylation and tyrosine kinase activity towards other endogenous and exogenous substrates, but only when detergent is present. We propose that the primary effect of detergent is to create conditions in the lipid environment of the EGF-R that allow antibodies to induce receptor-receptor interactions necessary for tyrosine kinase activation. 相似文献
13.
Maribel Murillo-Carretero Ana Torroglosa Carmen Castro Antonio Villalobo Carmen Estrada 《Free radical biology & medicine》2009,46(4):471-479
Nitric oxide (NO) donors inhibit the epidermal growth factor (EGF)-dependent auto(trans)phosphorylation of the EGF receptor (EGFR) in several cell types in which NO exerts antiproliferative effects. We demonstrate in this report that NO inhibits, whereas NO synthase inhibition potentiates, the EGFR tyrosine kinase activity in NO-producing cells, indicating that physiological concentrations of NO were able to regulate the receptor activity. Depletion of intracellular glutathione enhanced the inhibitory effect of the NO donor 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA/NO) on EGFR tyrosine kinase activity, supporting the notion that such inhibition was a consequence of an S-nitrosylation reaction. Addition of DEA/NO to cell lysates resulted in the S-nitrosylation of a large number of proteins including the EGFR, as confirmed by the chemical detection of nitrosothiol groups in the immunoprecipitated receptor. We prepared a set of seven EGFR(C → S) substitution mutants and demonstrated in transfected cells that the tyrosine kinase activity of the EGFR(C166S) mutant was completely resistant to NO, whereas the EGFR(C305S) mutant was partially resistant. In the presence of EGF, DEA/NO significantly inhibited Akt phosphorylation in cells transfected with wild-type EGFR, but not in those transfected with C166S or C305S mutants. We conclude that the EGFR can be posttranslationally regulated by reversible S-nitrosylation of C166 and C305 in living cells. 相似文献
14.
Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase 总被引:5,自引:0,他引:5
M Spaargaren L H Defize J Boonstra S W de Laat 《The Journal of biological chemistry》1991,266(3):1733-1739
The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized cells, all antibodies were able to activate the EGF-R tyrosine kinase, as measured by EGF-R autophosphorylation and phosphorylation of other substrates on tyrosine residues. EGF-R tyrosine kinase activation correlated strongly with the induction of EGF-R dimerization. (i) Both processes specifically occurred in a narrow antibody concentration range; (ii) both processes required the presence of detergent; and (iii) both processes depended on antibody bivalence since monovalent Fab fragments were inactive yet regained full activity after cross-linking by a second bivalent antibody. These data demonstrate that antibody bivalence is essential and sufficient for EGF-R activation and that activation occurs regardless of the EGF-R epitope recognized. Finally, EGF-R dimerization was shown not to depend on receptor autophosphorylation since it still occurred in the absence of ATP. Also, partial inhibition of the tyrosine kinase activity by the specific EGF-R tyrosine kinase inhibitor tyrphostin AG 213 did not affect formation of EGF-R dimers. Taken together these results demonstrate that induction of EGF-R dimerization is sufficient and in case of antibody action, essential, for activation of the EGF-R tyrosine kinase and thus provide strong support for an intermolecular mechanism of EGF-R tyrosine kinase activation. 相似文献
15.
In the last few decades, several growth factors were identified in the testis of various mammalian species. Growth factors
are shown to promote cell proliferation, regulate tissue differentiation, and modulate organogenesis. In the present investigation
we have studied the localization of EGF and EGFR in the adult bovine testis by means of immunohistochemical method. Our results
demonstrated that EGF and EGFR were localized solely to the bovine testicular germ cells (spermatogonia, spermatocytes, and
round spermatids). In contrast, the somatic testicular cells (i.e., Sertoli, Leydig, and myofibroblast cells) exhibited no
staining affinity. EGF and EGFR were additionally detected in the epithelial lining of straight tubules and rete testis. Interestingly,
the distribution of EGF and EGFR in the germ cells was mainly dependent upon the cycle of the seminiferous epithelium since
their localization appeared to be preponderant during the spermatogonia proliferation and during the meiotic and spermiogenic
processes. In conclusion, such findings may suggest that EGF and EGFR are important paracrine and/or autocrine regulators
of spermatogenesis in bovine. 相似文献
16.
Rapid uptake of tyrphostin into A431 human epidermoid cells is followed by delayed inhibition of epidermal growth factor (EGF)-stimulated EGF receptor tyrosine kinase activity. 总被引:2,自引:0,他引:2 下载免费PDF全文
C A Faaland F H Mermelstein J Hayashi J D Laskin 《Molecular and cellular biology》1991,11(5):2697-2703
Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism. 相似文献
17.
Rat Sertoli cells secrete a growth factor that blocks epidermal growth factor (EGF) binding to its receptor 总被引:1,自引:0,他引:1
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis. 相似文献
18.
To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are also important in shaping the binding curves. Because we have controlled experimentally for many sources of receptor heterogeneity, we have limited the potential explanations for residual Scatchard plot curvature. 相似文献
19.
To study the activity of the epidermal growth factor (EGF) receptor during EGF-directed internalization, liver epithelial cells were exposed to EGF at 37 degrees C for various periods of time, washed, and homogenized at 0 degrees C. EGF receptor autophosphorylation was assessed in homogenates using [gamma-32P]ATP. Autophosphorylation was stimulated 3- to 6-fold in homogenates of cells incubated with EGF (100 ng/ml) for 15 min but was at or below basal levels in homogenates of cells treated with EGF for 2.5-5 min. This was surprising because immunoblotting revealed that EGF receptor phosphotyrosine (P-Tyr) content in intact cells was near maximal from 30 s to 5 min after EGF treatment. Excess EGF (1 microgram/ml), added after homogenization but prior to the assay, increased autophosphorylation in homogenates of cells that had not been treated with EGF, but failed to increase activity in homogenates of cells treated with EGF in culture for 2.5-5 min. Suppression of tyrosine phosphorylation of an exogenous kinase substrate was also observed at times paralleling the suppression of EGF receptor autophosphorylation. The transient suppression of receptor autophosphorylation in the cell-free assay was not explained by persistent occupation of autophosphorylation sites by phosphate added in the intact cells. The sites were greater than 80% dephosphorylated during the homogenization. Additionally phosphatase inhibition that prevented the normal loss of EGF receptor P-Tyr in intact cells at 15 min did not affect the pattern of early (2.5-5 min) suppression and later (15 min) stimulation of autophosphorylation measured in the cell-free assay. The suppression was not explained by activation of protein kinase C in that depletion of greater than 95% of cellular protein kinase C activity by an 18-h incubation of cells with 10 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) did not affect the early suppression of autophosphorylation in EGF-treated cells. Moreover, under the conditions tested, activation of protein kinase C by short-term treatment (0.5-10 min) with TPA or angiotensin II did not appreciably alter subsequent autophosphorylation in the cell-free assay. In contrast, a 30 degrees C preincubation of homogenates from cells with suppressed EGF receptor autophosphorylation led to the recovery of the ability of EGF to stimulate EGF receptor autophosphorylation. These results suggest that a rapid reversible protein kinase C-independent process prevents detection of EGF receptor kinase activity during an early phase of EGF-dependent receptor internalization. 相似文献
20.
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization. 相似文献